


7N
 {
AN
L))
s N
\ ¢
s’\"t«
ol
Q“Q\‘
R “ ‘X
~\§~\“
23

7
¢ & "
A\ -
>
t"\"’#'
> N\ ¥4
N




METHODS OF
CORRELATION ANALYSIS



METHODS OF
CORRELATION ANALYSIS

BY
MORDECAI EZEKIEL

Economic Adviser to the Secretary of Agriculture y {:,\;
Fellow of the American Statistical Assosiction ) \'5\ v
Fellow of the Econometric Sociely

N
SECOND® EDITION
£

AN
&
S

A/

NEW YORK
JOHN WILEY & SONS, Iwc.
Loxpon: CHAPMAN & HALL, LnaTep '



Corynienr, 1930, 1041 /b
BY \

Morpecar Ezrgimy, \\

Al Rights Resﬁ‘{%

This book or Ry B e0f mast not
be reproduced m Form without

the written pcrrmawn of the publisher.

ﬁmnn EDITION -
Printing, June, 1947

FRINTED 18 U, &, A,



PREFACE TO SECOND EDITION

Twice since the first edition of Methods of Correlation Analysis
appeared there have been reprintings in-which minor errors in com-
putations or typography were corrected. Now, a decade after the™\
publication of the first edition, I am making the first general revision:

There have been many refinements and developments in the appli-
cation of correlation methods to soeial and economic data dyring this
period, and a beginning has been made in their application {0 8ngineer-
ing and other technological problems. The general technigle has been
but, little changed during the period, and the maid body of methods
still seems useful. The major changes during the decade have been,
first, in the interpretation of the meaning of s ndard errors and, sec-
ond, in the application of logieal limitations g $he flexibility of graphie
curves. Other significant developments have been in the perfection of
new and speedier methods of caleulation and in the development of
methods of estimating the reliability~df*an individual estimate or fore-
cast, All these are covered in this\Pevision.

One completely new chaptef has been added to this edition, That
. is Chapter 19, dealing with ,tb'ebreliabilit-y of an individual forecast and
also with the applieabilitbf error formulas to time series. The con-
clusion is reached thefe)that these formulas are more serviceable in
connection with tithélgeries than has generally been believed. Chap-
ter 16, dealing with-the short-cut (Bean) methed of graphie correlation,
has been almiodt entirely rewritten and materially enlarged. Increased
emphasis islaced upon the precautions which need to be taken to get
dependg.hl’é"results by this method and upon the way in whieh logical
anal¥ais-should be used to place limitations upon the shape of the
curvey fitted, and thus prevent undue flexibility in their fitting. The
ghapters dealing with sampling theory, Chapter 2 for means and Chap-
ter 18 for correlation results, have been materially revised to bring the
explanation of the significance of standard error computations up to
the modern interpretation. The section on the sampling signifieance of
graphie regression curves has been moved from the technical appendix
to this section and has also been materially expanded, with fuller illus-
trations. After a decade of use, it is now believed that this technique
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provides a valuable check on the significance of graphic regression and
net, regression eurves.

Other chapters have been less extensively revised. Chapter 23, on
examples of correlation applications, has been briefiy brought up to
date. Onc time-series analysis has been extrapolated to date in Chap-
ter 14, A new explanatory example, which it is believed will aid the
student in eomprehending the meaning of partial regression coeflicients,
hag been added at the beginning of Chapter 10; and Chapter 11 has
been expanded somewhat. Although the analysis of variance is intro-
dueed here, no attempt is made to provide a complete treatmen€ for it,
as it -wag felt to lie outside the major field of this book. Chapters 7,
13, and 15, dealing with the measurement of standard errof of4stimate
and degree of correlation, have alse been revised to_state more pre-
cisely the meaning of the adjustment of the crude coffficients to obtain
unbiased estimates of the probable value in the wiiterse, Other chap-
ters have heen corrected or expanded in various.details. The appen-
dix on methods of computation has been expanded to cover the most
expeditious methods of ecomputing parti {{dorrelation cocfficients, the
standard error of an individual forecad€,)and of making graphic trans-
felrs in the graphic short-eut. method,; aid the explanations on the charts
in Appendix 3 have been modifiedin line with the changes in Chap-
ters 2 and 18. _

With respect 4o the petjemiial debate as between the use of elaborate
:_mathematical eutves or eansformations or the use of freehand curves
In representing curyilingar regressions, my basie position remains un-
changed in favorin\g\\freehand' curves unless there are logical reasons
for the selection(of a particular mathematical equation. Much more
attention is given to the logical meaning of freehand curves, however,
and to th~e. nse of logieal limitations in drawing in the eurves. As be-
fore, ?hi“’béchniqu?s for both. metheds are described and illustrated.
th,gﬁe t}); C;;Zie;mlegséngj If.rg;‘z;hon}?azne’ihoc%a to the other, and the discussion

~To aid instructors and :Jthersa \ii . BOmFWhaiv eXpand'ed. i
’ Eé"dition along with the old, the table n:f Il?ay ;th o use this revised
hroughout the hode et . mbers have beer} left unchanged
& ¢ ody of the book, new tables being designated by an A
or B after the number, TFigure numbers stmilarly are left unchanged
up to Chapter 16, where the considerable number of new figures added

~ made it scem better to begin renumbering. Equation numbers have
be:en left unchanged throughout, most of the body of the book, equations
b-em_g renumbered only from Chapter 21 on. Prior to that ;Jir?t cqua-
tions numbered with whole numbeis stand exactly as in tie ﬁr’stqedi-
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tion; when the previous equations were changed or new equations were
added, they are numbered with decimal fractions.

I hope that with these changes and additions the book will prove
more useful than heretofore for elassroom purposes and individual
study. Naturally I am grateful that so specialized 2 book as this has
found so wide an application in teaching and rescarch, and T am always
interested in hearing of applications of these methods to new fields.

During recent years I have had to devote myself primarily to
matters of economic policy and have not been able to follow the de-
velopments in statistical methods as closely as during the period when™
this book was first taking shape. In preparing this revision I haveshad
to lean heavily on the advice of those who in recent years have béen
closer to statistical teaching and praectice than I have been“mnysell.
Valuable suggestions as to desirable revisicns and new,. gontent have
been received from Frederick V. Wanugh, Charles F, £4rle, Elmer J.

Working, Louis H. Bean, O. C. Stine, and Clareneé M) Purves. T am
indebted to my first teacher, Howard R. Tolley, for many suggestions
noted during the period he was using the ho ’;fBr classroom teaching
at the University of California, In additi(in, much of the revision,
especially in the more mathematical sectlons has been guided by the
advice of two expert mathematical stat;stlclans, W. Edwards Deming
and Meyer A, Girshick. Iam decpl'y ihdebted to them both for helpful
suggestions and critieisms and fomreading much of the revised manu-
script, especially the sections deallng with the sampling significance of
results. The inereased eclslon and clarity of these sections are
largely attributable tq ﬂ’lgh' aid. R. G. Hainsworth has again helped
me with the figures,t piaintaining consistency with the exeellence of
those he preparedN6r the first edition. Any errors or misstatements
remain my ownresponsibility, and not that of those who have aided
with suggestxgns or eriticisme.

To theSE\and to many others who, over the years, have called my
atbentmp to errors or suggested revisions 1 express my appreciation
and g«;atltude

Mthough the new material has been carefully checked, some errors
of computation or notation have no doubt erept in. Again I shall be
grateful if any student or reader will inform me of any such errors he
notiees.

Morprcar EzeKiEL

WasamNgToN, D, C.

June 15, 1941
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This bock is not intended to cover the entire field of statisties, but
rather, as its name indieates, that part of the field which is con-
cerned with studying the relations between variables. The first two
chapters are devoted to a brief review of the central elements in‘the
measurement of variability in a statistical series, and to the essehtial
concepts in judging the reliability of conclusions. These Cehapters
are not to be regarded as a full statement, but instead as. Sbrief sum-
maries to clarify the basic ideas which are involved i m ’c.he subsequent
development. ~

No attempt is made in the body of the text 1o present the mathe-
matical theory on which the art of statistical analysis is based. Tn-
stead, the aim throughuut has been to show‘how the various methods
may be employed in practical researehy Wwork, what their limitations
are, and what the results really meany\Only the simplest of algebraic
statements have been employed, and, the practical procedure for each
operation has been worked out sfép by step, It is believed that the
material will be readily comprehensﬂ:le to anyone who has had courses
in elementary algebra. ~\

Although the exa R;s which are used in presenting the several
methods are drawn pery’ largely from the author’s own field of agri-
cultural economicgy the methods themselves are explained in suffi-
ciently general Jberms so that they can be applied in any ficld. In
addition, tweséhapters are devoted to a discussion of the types of
problems in'a’great many different fields of work to which correlation
analysisshis been successfully applied, and to research methods and
the. plaee of correlation snalysis in research. It is hoped that this
presentation will assist research workers in many fields to appreciate
both the possibilities and the limitations of correlation analysis, and
so gain from their data knowledge of ail the relations which so fre-
quently lie hidden beneath the surface,

Where the methods presented arc the well-established ones devel-
oped by the fathers of the modern seience, mainly the English statisti-
cians, no attempt is made to prove or derive the various formulas,
On a few crucial points, however, or ‘where derivations not generally

Ix
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accessible are involved, the derivations of the formulas are shown in
notes in the technical appendix, in the simplest manner possible.

The methods presented in this book, insofar as they econstitute
an advance over those previously available, represent largely the
joint product of a group of young researchers in the Buresu of
Agricultural Economics of the United States Department of Agricul-
ture during the past decade. The new methods inelude {(a) the appli-
cation of the Doolittle method to the solution of multiple correlation
problems, greatly reducing the Iabor of obtaining muitiple correlation
regults, and making fessible the use of multiple correlation fdhaetual
research work; (b} the development of approximate mcthods for
determining curvilinear multiple correlations, and, mere recently,
very rapid graphic methods for their determination;\ (€) the recog-
nition of “joint” correlation, and the gradual devefo;ihlen_t of meth-
ods of 'treé_l,t-jng i_t; and (d) by extensive use in.fctaal investigations,
conerete demonstration of the possibilities of these methods in research
work. These recent developments in corr tlon analysis are as yet
largely unavailable except in the origi'p'\é.l» articles in technical jour-
nals. One object of this hook is to present them in organized form,
and with such interpretation that, their significance and application
may be fully understood.

During the last two decgdéé,’ the English statisticians “Student”
and R. A. Fisher have been~gdéveloping more exact methods of judg-
ing the reliability of copdlisions, particularly where those conelusions
invelve eorrelation or{gw based on small samples. These new meth-
ods have as yet received hut little recognition from American statisti-
cians, They mje:presente_d here as simply as possible, and the dis-
cussion of the ‘weliability of conclusions gives them full consideration.

So many. persons have helped in the years during which this book

has begs;’gmwing that it is difficult for me to enumerate them all.

First 6£0all 1 should like to mention Howard R. Tolley, from whom

_ 1 roeeived my introduction to statistics, and with whom it has been a

~Lodstant joy to work, give him credit for much that is ineluded
ere.  The very order of

) presentation reflects that which he worked
out_ for his classes. I ¥

|

anah‘rsis, and then-'a.idcd_with encouragement, and counsel in their
solution. Bradf?rd_ B. Smith aided in the beginning of the new devel-
opments, and his vivid Imagination and logical mind have been a
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constant help. Among others who have collaborated in various stages,
or who have independently worked out various phases of the problem,
may be mentioned Sewall Wright, Donald Bruce, Fred Waugh, Louis
Bean, and Andrew Court. Busie White, Helen L. Lee, and Delia E.
Merrick have given intelligent, conscientious, and loyal assistance in
the clerical work in the development and testing of each new step.

In the preparation of the book itself I have had generous and
willing help. Dorathea Kittredge and Bruce Mudgett have given the
very substantial assistance of 2 detailed reading of the entire text,
and many improvements in presentation and in material are dueds
their suggestions. For two terms the mimeographed manuseript Bas
heen used as a text in the United States Department of Agr\iéﬂfture
Graduate School, and the members of the class have helped me in
working out the illustrations, in elarifying the text, and I eliminat-
ing errors, R. G. Hainsworth, who prepared the figires, deserves
credit for the excellence of the graphie illustratiens. 0. V. Wells
helped in computing many of the illustrative ‘problems, and Cor-
rine F. Kyle in verifying the arithmetic. . ‘Ber the laborious and
exacting work of typing the preliminadry) stencils, the many re-
visions, and the final manuscript, and\Jor her care, paticnce, and
suggestions, I am indebted to my mother, Rachel Brill Ezekiel; and
for editing the manuscript and helping in the lengthy task of proof-
reading, to my wife, Lucille Kinsterwald Ezekiel.

To all these, and to thesmuany others who have helped me in the
development of this Wor}'{;\l take this opportunity of expressing
my obligation and my ‘eratitude.

For any errors jn)the statements made and in the theories ad-
vanced, I alone Anfof course respensible. Although the text has been
checked painst@kingly, it is hardly to be hoped that a publication of
this charapt\ét“{vill appear without some errors creeping in, in mathe-
matics, ip\arithmet-ic, or n spelling. When such errors, or any
ambiglnties of statement, are noted by any reader, I would be very
giatefal if he would inform me of them.

MorpECAI EZERIEL.

Wasamvaron, D. C,
April 20, 1930.
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CHAPTER 1
MEASURING THE VARIABILITY OF A STATISTICAL SERIES

Statistical analysis is used where the thing to be studied can be
reduced fo or stated in terms of numbers. Not all the underfakihgs
that rely on measurements ordinarily employ statistical analyses(\In
surveying, physics, and chemistry, for example, the particular, thing
being studied can usually be meastured so closely, and x@ﬁés over
such a small range, that the true value can be establifshe‘d within
narrow limits. In fact, the concept of true value gwes"its existence
to the reproducibility of measurements in certain fields. In many
natural sciences, likewise, the problem to be studiedl can be simplified
by the use of controlied experimental c-ondj{idns, which permit the
influence of various factors to be studied gngat a time. FEven in such
sciences, statistical methods can be used, 'to'plan experiments in such
& way as to make the conclusions most significant with a mwinimum
of effort. In the social sciences, there arc fewer opporfunities for the
use of controlled experiments. Such sciences have to rely on statistical
analysis, both to judge the sighificance of observed differences and to
untangle the separate effegts/of multiple factors. Statistical analysis
i used in the study of oevéurrences where the truc value or relation
cannot be measuredy'directly or is hidden by other things. The
numerical staten}mit\of the occurrence or of the relationship cannot be
obtained diregtly,\from the original or “raw” figures. Instead, the
data must beuanalyzed to determine the values desired.

The es’ﬁecia.l need for analytical methods in the social seiences
has bgen ¢learly stated by an eminent Englishman, as follows:*

\_/Causation in social science is never simple and single as in
- physics or biology, but always multiple and eomplex. It is of
gourse true that one-to-one causation is an artificial affair, only
to be unearthed by isclating phenomena from their total back-
ground. Nonetheless, this methed is fhe most powerful weapon
in the armory of patural seicnce: it disentangles the chaotic field
of influence and reduces it to & series of single causes, each of
which can then be given duc weight when the isolates are put

- 1 Julian Huxley, The science of society, Virginiz Quarterly Review, Vol. 16,
No. 3, pp. 348-65, surmmer, 1940, -
: 1



2 MEASURING VARIABILITY

back into their patural interrelatedness, or when they are de.

. liberately combined (as in modern electrical science and its appli-
cations) into new complexes unknown in nature. This method of
analysis is impossible In soeial science. Multiple causation here is
mrreducible.

The problem is a two-fold ene. In the first place, the human
mind is always locking for single causes for phenomena. The very
idea of multiple eausation is not only difficult, but definitely anti-
pathetic. And secondly, even when the social seientist has over-
come this resistance, extreme practicsl difficulties remain. Some-
hew he must disentangle the single causes from the multiple, field
of which they form an inseparable part. And for this a néw tech-
nique is necessary. ¢\

"\

The arithmetic average. The basie forms of st;q,j&is’tical analysis
have to do with organizing quantitative informa$ion &s a basis for
drawing inferences. Some of the basic work infolves averaging and
classifying data. Thus if one were studyingtile’yield of corn in one
year in some area, say a county, for exampls; he might talk with 20
farmers picked at random and obtain figires, such as those in Table 1,
showing the yield of corn which eachyMarmer had obtained.

The most natural first step in redtcing such a series of obscrva-
tions to more usable shape is toMind the arithmetic average—to add
all the vields reported and g{iﬁde by the number of items. ‘The 20
reports total 600 bushels, or*an average of 30 bushels.? This provides
a single figure into wh:lpq ¢ condenszed one characteristic of the whole
group. (\J

N

? Bushels are usedl,here to represent any other quantity in which one might be
interested in a particilar case. If we let X’ represent the number of bushels reporfed
by farmer 1, X’tﬁne bushels reported by farmer 2, X' the bushels by farmer 3, and
80 on, we cafl/$hen represent the sum of all the reports by the expression X (read
“summation of the X’s”). Similarly, if we use n to represent the number of chserva-
tions weshave obtained and use M, to represent the average {or mean) number of.
hugl}e]s for all reports we can define the arithmeiic mean by the formula;

Q) _
\™ M, _=X L
"

This formula can be applied to anything we are studying, no matter whether X

means bushels of comn, inches in height, degrees of temperature, or any other measur-

?ble ‘ti]l;anta]’]tiil;l or w]]:;ether there are 2 eages or 2 million. This is a perfectly general
ormula w can be applied to any given problem. As statistics i f
general methods, so stated that th : e myobiene o cred

ool ey can be applied to particular problems as desired,

® necessary to Use many genera] formulas of this sort. The student should
t.herefore. familiarize himself with the definitions given ahove and with the way they
:;:i ::;ds in formuls, (1), 8o that he will be able to understand and use each formula as

- i LRSi—



CLASSIFYING THE DATA 3

But the average is not the only characteristic of the group which
might be of intercst. The average would still be 30 if every one of
the 20 farmers had had a yield of 30 bushels per acre; yet there

TABLE 1
YrELDps oF CorRN OBTAINED BY TWENTY FARMERS*

Farmer 1 Yield Yarmer Yield Yarmer | Yield Farmer Yield
Bushels Bushels Bushelz Bushelsl
per acve PET acre per acre pef'acre

1 29 6 33 11 29 16 | 38
2 25 7 26 12 35 17 O3
3 38 8 28 13 26 18 o3¢ 37
4 30 9 30 14 23 BN P28
& 27 10 29 15 31 | 420 32

* In making entries in a table such as this, the actusl values may he ‘rounded ofi  to any desired
extent. In this case they are rounded to the nearcet whole bushel \For example, "33 bushels™
represents any report of 32.5 bushels or more, snd any up to huet mit;i. cluding 33.5 bushels. Tf the
criginal reports were seeured to the nearest tenth bushel, this might be indicated by Wwriting **32.5-
83.4" instead of “33"; or if secured to the nearest hundrpdf.h bushel, by writing *83.50-33.49."
The entry “32.5 to 33.5 " will be used to indicate “from 3235 #p to but nof including 33.5,” whereaa
“32.5-33.4" will be used to menn “from 32.5 to 33.4, belh inclusive.”
certainly would be a significant difference between 20 reports each
of 30 bushels, and 20 reports ranging from 23 to 38 bushels, even
though hoth did have the sapighaverage.

Classifying the data, ,O”rk way of showing the differences in the
individual reports is to Arrange them in some regular order. 1If the
farmers interviewed Kave simply been visited at random, and not
selected so that thbs€visited first represent one portion of the county
and those visitect\[atcr another portion, the order in which the records
stand has no@i}}g to do with their meaning. As a first step o seeing
just what e’ data do show they can be rearranged in order from
smallest\io‘ largest, as shown in Table 2.

7N \ oo 4

N/ TABLE 2
Yenpg oF Corn onN 20 FarM=, Arrancep 1N OspER oF INCREASING YIELDS

Bushels per acre

23 28 30 33
25 - 28 30 33
26 29 31 35
26 29 3 - 37

27 29 a2 38
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1t is now easier to tell from the series something about the group
of reports. One can now see that only 1 farmer had yields of less than
25 buchels per acre, and only 2 had more than 35, so that 17 out of
the 20 had 25 to 85, inclusive. ‘The series shows, too, that 10 of the
farmers had less than 30 bushels of eorn per acre and 10 had 30 or
more, so that the figures 20 and 30 mark the middle of the number
of yields reported. If we divide each half into halves again, we see
that 5 men had yields of 27 bushels or less, 5 had yields of 33 bushels
or more, whereas 10 men—half of those reporting—had yields of 28 to
32 bushelg, inclusive. This tells something about how variablg Yields

‘were from farm to farm in the area from which the reparts were
secured—half the reports fell within this 5-bushel rangeA<\\

Even as rearranged in Table 2, the 20 reports sti]]oqpn‘s’titute a large
tabulation. If there were several hundred, such aMsting would be so
unwieldy that it would be difficult to use. ‘

Frequency tables. The records can be stitdied more easily if, in-
stead of writing “29” threc times when thecd are 3 farmers with 29
bushels each, we simply show that eachﬁ{fn?) men reported 29 bushels.
Similarly, instead of putting “30” doww twice, we can show that 30
bushels were reported by 2 men. If £iis operation is performed for all
the reports, the data ean then bé-assembled into what is known as a
“frequency table.” Tt showgithe frequency, that is, the number of
times each yield of corn wa® reported.

In preparing a freq@émncy table such as Table 3, spaces are put
in’ -fqr all yields (such.ts 24 bushels} for which no reports were re-
ceived, but which l\l‘e between the largest and the smallest report, to
show clearly thabaio such yields were reported. _

Table 3 ig\an improvement on Table 2, but it is still pretty long—
and’if the dowest yield had happened to be 15, say, and the highest
60, it ,m'gu’ld have been longer still. For that reason it is frequently
desj{gﬁh?fe fo group the reporfs, not only for a yield of a specified

Ml}u'x’nber of bushels but for yields within a eertain range of bushels.

< (:I‘hus Table 4 is just the same as Table 3, except that, instead of show-
ing the number of reports by individual bushel groups, it shows the
number of reports for groups covering 3 bushels,

The presentation is now condensed enough so that it can be readily

s - .
ol In Etatlsll(!!fl.]. ter_mmologg_.', the figure that divides the number of reports into

a VEH'S 29.5.in this case—is termed the median; and the figures that divide the
numbers inte quarters—as 27.5. and 32.5—are termed the lower and upper guartiles.
The difference hetween the two. quartiles, wi

: , within which th
reports fall, is termed the interquartile range. € centra]. half of the
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understood. Tt is easy to see that most of the reports fell around
25.5 to 34.4 bushels and that more fell near 30 bushels than any-
where else. Of course, the 3-bushel group is purely arbitrary, and

TABLE 3

Frequency Tasie, Saowmne Nouser o Tves Facn YL was REPORTED, BY
Inpivipval BuseELS

Yield of Com N““}Z;’;:’tidmm Yield of Corn N““;E;ro;;idmes
AN
Bugshels Bushels e\
23 1 31 2™
24 0 32 R
26 1 33 A 2
26 2 34 ~NT 0
27 1 35 v 1
23 2 36 0
29 3 *\\\ 1
30 2 33 \ 1

N/

any other convenient “class mterval\,” % it is called in statistical
terminology, could have been used.{ “Thus, if a f-bushel class interval
had been selected, the convemeﬁt groups 19.5-24.4, 24.5-20.4, 29.5-

+ & “y'TABLE 4

I REQUENCJ}.‘ABLE Spowing Numser oF TiMEs
Eacn Y IELD was REPORTED, BY 3-BusuEL GROUPS

W
SO Number of
\;~~: Yield of com times reported
O\
P A’ Bushels

a\Y4 . 22 525.4 2
\/ 25.5-98.4 5
28.5-31.4 7
31.5-34.4 3
34.5-37.4 2
37.5-40. 4 1

34.4, and 34.5-39.4 bushels could have been established, giving fre-
quencies of 1, 9, 7, and 3 for the four groups. Just what elass inter-
val makes the most satisfactory table for any given set of dats
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depends upon how the data run and how much detail it is desired
to show. Where convenient, elass intervals of 10 or some fraction or
multiple of 10 are most convenient—the example just given shows
how much easier it is to comprehend the 5-bushel classes than the
3-bushel.*

Measures of Deviation

The average deviation. Table 4 shows, in fairly eompact form,
the way that the several individual reports fall on each side.gf the
average value. For some uses, however, it is desirable to have\asingle
figure which expresses the “scatteration” of the whole gronp of re-
ports, in just the same way that the arithmetic mean{expresses the
average yield of the whole group. N

One way in which the tendency of the group tdyscatier either fax
from, or close to, the mean may be measured.is.\t;y finding out how
far, on the average, each report lies from theésinean. The following
tabulation illustrates the way m which tlﬁ‘s' can be done:

TABLE )5
COMPUTATION GF AVERAE{E»’ jf)mwuionr FROM THE MEAN
. N\ Report minus
Original report s Mean the mean
AN
)
Bushﬂ& Bushels Buashels
/20 30 : -1
.\' > 25 30 —5
O 38 30 8
= D7 30 0
NG 30 - -3
L\ - L
A Total ., ,........ ..o e, 60
.

k3
) . "
\ * The remsining %5 reports are not ehown in this table, though included in the total.
t The plus and minus signs are disregarded in making this total.

60 bushels ‘

Average deviation = 2 = 3 bushels

4+ Where tht‘are. iza tendency for the reports to be grouped around certain values,
such as 8, 10, it is desirable to take the class intervals so ag to make these values

fall in the middle of the groups. Thus, with & conee i !
- ’ miration on even &' and 10%,
the groups 25-74, 75-124, 125174, ete., may he used. )
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In computing the average deviation, the plus and minus signs
sre disregarded in adding up the individual differences from the
mean.®

The new figure, 3 bushels, is the average deviation of all the re-
ports. It shows that the 20 individual reports differed {rom the mean
yield of 30 bushels by an average of 3 bushels each. This furnishes
& single figure which expresses how much or how little the individual
vields differed from the average yield. If the group of 20 reports
were being compared with another group of 20, all of 30 hushels
each, the qverage devietions of the two sets would indicate at onge
the difference in their make-up, even though both sets had exactly
the same average value of 30 bushels. The second set, withmfr'the
reports cxactly equal to the average, would have an average, deviation
of 0, ag compared to the 3-bushel average deviation fop thelfirst set.

4

"

5 Before writing the general formula for the average deviaﬁa} it iz first neeces-
saty to have some way of writing any devialion. Tsing X\teo Indicate any given
report, as before, and M. to indicate the arithmetic average/of all such reports, the
small # will be used to indicate the deviation of eac}s'\faport from {he mean of al},
thus: N

X —M.=2') (2
X' - M: ?i’
X" — ﬂfiﬁ’?’,—; Wt

and =0 on. RN

Similar to the previous usage, Sx“aead “summniation of all the small #’5™) is
used to indicate the sum of the valubs such as z, 2/, 2", ete.
The average deviation, der{qte&by the sign &, i then defined by the following
equation: ‘\\ N
: 5 Zx (taken without regard to sign) (3
RS n

</

J 1 T:] neeessary~fb~ﬂisregard the signs in taking this sum, a3 otherwise the sum

would be zer 1"i‘f"t-he signs were not disregarded, the values added would be as
follows: O\

“’f; Foritem 1,z (=X — M,
) item 2, ' (= X' — My
Yy item 3, 2"’ (= X" — M,)

and =0 on to the last item
item 7, Ta (= X — M3}
%o when the deviations were summed,
¥z =X — uM,;
but

M, = Ef, sonl; = ZX

hence
T =0
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Whereas the arithmetic average is a measure of the central {end-
ency of a group of reports, the average deviation is instead a measure
of the “seatteration” of the individual reports—of their tendency to
lie near to, or far from, the central value.

The standard deviation. How far a group of reports tends
10 scatter from the mean of the group may also be measured by an-
other coefficient which has certain advantages from a mathematical
point of view. This measure is based on the deviation of each report
from the mean, just as is the average deviation. After the indiyidual
deviations are computed, each one is then squared. These sguared
values are added together to give the sum. This sum is then\dlvlded
by the number of items, and the square root extracted of this average
of the squared deviations. )

TABLE 6 g»:\‘

COMPUTATION OF STANDARD DEVIATIDN\{BOM THE MEAN
AY,

- Report minus th
Original report Mean nfeaﬁr(znt:::\‘:iitioﬁ) Deviations squarcd
Bushels Bushels o0 Bushels Bushels
29 30 3% -1 1
5 20 -5 25
gg A 8 64
¢ EN\30 0 0
27 N 30 -3 9
* S
Ve
Total. .. .. | 0 3% NN I
7. dit SORRARRERLLELRREN IEREERRCERREREREE 288
—~L
* The

‘%symmng 15 reports are not shown in this table, though ineluded in the tcrl.al

\The sum of the squared deviations, as shown in Table 6, is then

\dmded by the number of items ineluded in the group, and the
square root of the result computed. The computation is as follows:

2 e
20

Standard deviation = V'14.4 = 3.79 bushels ¢

8The Greek letter o is nsed as the gign for the standard deviation. Using = to
represent individual differences from the mean, a5 before, 22 for the square of each
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The new value, 3.7 hushels, is called the standard deviation.” (It
is sometimes called the root-mean-square deviation, because it is the
square root of the mean of the squares of the individual deviations.)
In comparison to the average deviation, which was found to be 3
bushels, it is somewhat larger. That is a relation which always holds
—+the process of squaring the deviations tends to emphasize the larg-
est deviations more than does merely averaging them together. With
well-distributed observations, so that the distribution is “normal”
or nearly “normal,” the standard deviation is about one and a quarter, \
times as large as the average deviation®

of such deviafions, and 22 for the sum of all such values, the standard dgwfiﬁtibn
is defined mathematically by the formula O
St N
g = Af— £ (4)
n \\
Where the arithmetic average is a fraction, so that compufing each individual
deviation and squaring it would take much arithmetic $or accurale work, the
standard deviation may be computed more casily by thg\ollowing formula:

2 X
.r,=1,2l—M§‘.’ (5)
n R

Here the original X values are squared ingtéad of the deviations from mean, or 2,
values, It can be readily demonstrated glgebraically that the two formulas give
identieal values for oz, SN\

Thus eachz = X% M.

each xz.ﬁfj)}ﬂ - 2XM, + M}
hence \\ 2
Tri= X2 — 02X M, + ZM;

But

ANK } ZX = nM,
and "\.;.\.. El‘fg = ‘RM%
hence \\ ' Tt = X7 — 2nM2 + nM2
and N Tt = BX? — aME

AR

7I0rw shorter method of computing the standard deviation, when there is a
large imber of ohservations, sse Note 1 at the end of this chapter.

8 A “pormal distribution” iz such a one as will be obtalned from a series of ob-
servations of a variable inflaenced only by a Ilarge number of random or chance
cansce, each one small in proportion to the total, Thus the values secured by
tossing a number of dice, and noting the spots at each reading, tend to conform
1o a “normal curve” Variables composed of a large number of small, independent
clements slso tend to have a normal distribution. Since this distribution ean be
studied mathematieally, it is possible to work ouf theoretically many of its prop-
erties.. These theoretical characteristics of the normal curve are valuable in study-
ing data where the distributions sre nearly normal.
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The distribution of the observations shown in Table 3 is fairly
regular. Most of the reports come at about the middle values and then
thin out to both ends (that is, the distribution approximates normality).
In such cases the standard deviation gives a measure of the range
within which & definite proportion of the cases will be included.
Specifieally, if we take the range from the distance of the standard.
deviation below the mean to the distance of the standard deviation
ahove the mean, about 68 per cent of the records will be included.
In this particular case the mean is 30.00 bushels, and the stapdard
deviation ig 3.79 bushels, so the range will be from 3.79 lessuhlan
30.00, or 26.21, to 3.79 more than 30.00, or 33.79. Comparing this with
Table 3, we find that 13 farmers reported yields betw¢en® 26.5 and
33.4 bushels, whereas 4 reported 26.4 or less, and 3 reported 33.5 or
mote. The range 26.5 to 33.4 thus included 13 out of/fhe 20 cases, or 65
per cent, This comes as close to the 68 per L‘Bfli’; which would he
expected for the range 26.21 to 33.79 provided\the distribution of the
data were normal as would be anticipated with only 20 observations.

For some uses, the square of the staqda:rd deviation has advantages
over the standard deviation itself. J‘us‘c.x ag the standard deviation,
3.79 bushels in this case, may be\thought of as measuring “vari-
ability,” so the standard deviatien squared, 144, may be thought of
as measuring “‘average squgyéd'variability.” The term ‘“‘varianec”
has been suggested by R.zA. Fisher, an eminent English stafistician,
to designate this squared\wariability, and that term will be used here-
after in this book@eh the standard deviation squared is to be
referred to. '

The relatignof the three measures which have been discussed in
this chapteyithg mean, the average deviation, and the standard devia-
tion—is ilustrated graphically in Figure 1. Here the frequency
distri})ﬁ;io‘n shown in Table 4 has been charted, showing the yield in
bushels" of eorn along the bottom of the chart, and the number of
.I?l?bftﬁ falling in each group along the sides.?

® Mathematically, the quantities which are messured from left to right, and
ihowr} along the bottom of the chart, as the bushels of corh are here, are ca]le,d the
abscissas,” whereas the quantities which are measured from boé-to’m to top anr‘i
sl}own along F-he sides as the number of reports are here, are ealled the “or&imlt-e"-! "
Smce.s.ny point in the whole chart can be located by telling how far it is from tﬁe
Tefi mde,_and how high it is from the bottom, these two items tell em;t]y where
a.u{ particular point in the figure should fall. Thus the line fm' the tgroup frc;m
285 to 315 bushels has for ordinate the height 7 farms, and the abscissas of the

ends of the line are 285 and 315 bushels. The ord; i
gether, are called the “coordinates” of a point, ¢ orcinate and sbecisss, taken to-
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Besides showing the number of reports included in each 3-bushel
group by the height of the continuous line, the position of the mean
in about the center of the group of reports is indicated, and likewise

Number
of reports
|
I
6 I
LI I
AN N T
4 b | (Mear 2 )| 44 \
| W average - 2 AN
y | (Gevigtiea) | N
X e O
2 |- || oy
i AMego 2. 5tondor )
dewiation )i D
i bemptoap | W\
0 | R | | Lat ] ] )

20 2% 28 32 36 40 )
Yield of corn- bushels per acre , 7%

Fic. 1. Frequency distribution of corn yields, ant'l,r;n’ge above and below the
: mean inchided by average and standayd deviations.
the number of reports ineluded Wit-h'u;ﬁ & range of both one average
deviation and of one standard d;evis;tion on each side of the mean,
Summary. This chapter hag\shown (1) how a series of measure-
ments of any one variable, . dueh as the yield of corn from farm to
farm, may be classified 1ﬁib a frequency distribution which shows
how the individual reports are distributed from high to low; (2} how
an arithmetic averagéfnay be computed which shows the value around
which all the repo'?ts center; and (3) how the variation of the in-
dividual repor {tYom the average may be summarized by computing
the average dew iation or the standard deviation, either one of which
Serves age an "indication of the variability of the items included in
the périicilar series. Although these statistieal constants, especially
the arithmetic average, are frequently of value for themselves alone,
they are discussed here because it is necessary to know how they are
computed and what they mean before the next propositions to be
discussed ean be fully understood.
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Number of |Deviation from Extensions
Yield reports assumed mean

F . (@ aF dF
22 5to26.5........... 2 -2 —4 8
26.56t028.5........... 5 -1 —5 "N 5
28.5t03L.6 .......... 7 0 0 0
81.61034.5........... 3 +1 3¢\ 3
3M4.5t087.5........... 2 +2 g\ 3
37.51040.5........... 1 +3 ~\? 9
Bums. ... ooiinnnnn. 20 . ....f\‘ +1 33
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ﬁotg 1, Chapter 1, Where the number of observations is lurge, the standard
deviations may be eomputed mere readily from a grouped frequency table than -
from the individual items. This process is illustrated in the following tabulation, -

The standard deviation is then ealcu]ated\ fiﬁ}n' the grouped data by the formuls -

S(EFN[Z@R &

=l [— = — ®) .

(A n 12

Substituting the values shoym in the tabulation :
- \/ﬁ Iy 1 = /165 2 _ 5 k

“ = Nz 740 ) 13 = V185 - (0.05)* — 0.0833 — 1.2

\\

In making {iis computation, any convenient group may be sefected as the
assumed meafy giid the deviations of the other groups (d) caleulated as departures -
from it. 'Ithis method sssumes that sll the eases in each group fall at the center of -
the groupyt, With most variables, with a tendeney toward a normal distrilyution, the :
averageof the items in each group will fall somewhat nearer the center of the dis- -
_tl‘.i.bﬁtloll than the midpoint of the group, so the use of this method tends to give foo !

N 2
~large & value for the standard deviation. The correction — :—2 called “Sheppard’s -

. eorrection’ after its originntor, makes an approximate aliowance for this tendeney.

The ¢ of th_e forn:ﬂjla stands for the number of units of d in each class interval -
Where a unit of ! is used for each class interval, as in this problem, the correction

. 1 -
becomes simply — 5’ to be applied ta o2

In computing the standard deviation ffom & grouped frequency table, the & eal-
elﬂ‘a.t?d will be in terms of the units in which d is expressed. In the illustration, each
}mlt in d—one class interval—represents 3 units in X, , since the yields were grouped
in 3_-bushel classes. The standard deviation eomputed in terms of class intervals, .
vy, 18 therefore only one-third ag large as is the standard deviation in terms of X. -
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The latter may be calculated from the former by multiplying oy by the number of
units in esch group. That is,

a: = (units of X per class interval) oy
In this problem
g, = 3 (1.26) = 3.75

The resulting value, 3.75, found by the short-cut method, is seen to be almost the '
same as the exact value of 3.79 bushels, previously found by the longer method. The
greater the namber of cases, and the more nearly normal the distribution, the more
time will the short-cut method save, and the more nearly will its approximate result
agree with the exact value found by the longer method. O
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CHAPTER 2
JUDGING THE RELIABILITY OF STATISTICAL RESULTS

Almost without exception, the object of a statistieal study is to
furnish & basis for generalization. In a case like that discussed in
the preceding chapter, for example, no one would be likelyho visit 20
farms scattered all over a county simply for the pufpdse of finding -
out what the yield of corn was on these particu‘hf} Jarms. Instead,
he might be studying the yicld on those farms ag@ basis for determin-
ing what the average yield of corn was for alk 'tlﬁ\ farms in thc county. -
Stated in statistical terms, he would be fidding cut what was the
average yield in a sample of farms, pigk&} ‘st random, with a view to
determining what was about the .average yield in the wuniverse in
which he was interested, that is, af\all the farms in the eounty.!

Of course it would be possiblele visit all the farmers in the county,
find out exactly what yield eagh’ one obtained, and so get an average
of all the yields in the whole county. But this process would not
only be expensive but alsg i most cases would be a pure waste of time _
and energy., We ng.e& only take a large enough sample by a well-
designed sampling%{'(he{hod to satisfy ourselves to any desired degree
of accuracy eancerning the actual average for all the farms of the
county. In ghiv case, 100 records may enable one to determine the
average yiell quite as accurately as is necessary. Obtaining records
from a:l.l\’f:he several thousand farmers in the eounty might add nothing
to th%signiﬁcance of the results, ) :

"}Before considering ways of finding out how many records would

L. (be" necded in any given case, we might well discusz a little more
) Tully what, the process of statistical inference involves, RReally, all
1_;hat we do is to examine or measure a certain group of objects, and
infer from the size or measurement of those objects, or from the way
those objects behave, what will be the size of other objects of the

1 '_I"hfese two terms, “universe,” meaning the whole group of cases uboul which
one 18 interested in finding out certain facts, and “sample,” meaning a certain
n.umber of those cases, picked at random or otherwise from all those in the par-
tienlar nniverse, are both used frequently in statistical work, and should be cleatly
understood. ,

14
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same sort, or how other objects of the same kind will behave. This
process is also called induction, beeause from particular facts about
particular objects we lead out (in duct) general conclusions as to what
wiil be the facts for all such objeets in gencral. Now of eourse we do not
really know what the particular facts are for any particular objeet
without actually examining that individual object. All that we can do
is to separate off certain groups of objects which we know to be alike in
one or more particulars, and then assume that they will be alike
in other particulars too, even though we do not examine cvery one ,
to prove it. In the ease of our farms, all that we know about them
is that they are in the same county. Now because they are ing {ha _
same county, we may expect that the temperature will be abouf? the
same, the rainfall will be similar, and the growing season Wﬂl prob-
ably not be much different from farm to farm. We may/afRo expect
that the kind of soil will not be very greatly differents from farm
to farm, and that the fertility will be somewheré\héar the same.
Finally, we may expect that the fields are equallyswell drained on the -
farms within the county.? But these expectatichs“are not necessarily
matters of known fact—we may expect that #hey are so from our gen-
eral knowledge of the particular situationland of other similar situa-
tions. If the conditions agree with our expectatlons, generalizations
from the facts of our sample to the, facts of the universe as a whole
may be correct; if conditions de,not agree with expectatmns, then
our general conclusions. may bg incorrect. In either case it i3 not
merely a mafter of statigt a.{‘eechnlque but also of prior or additional
knowledge of the sub]ect.\&ll that the statistical technique can do
is to provide us with ar wverage (or other measure or description of our
facts) and a statement of how much confidence we can place in that
average under ceptdan given asswmpiions. Those assumptions may not
he eorrect in @y given case, and then our conclusion will be incor-
rect alzo; bu’,r,:that is not the fault of the statistics, but of the statis-
tician;'get\'ja'f the facts, but of the use to which we try to put them.

Assumptions in sampling. The basic assumptions upen which the
theory of sampling rests apply both to the way in which the sample
is obtained and to the material which is being sampled. With respect
to the material sampled, the assumption is that there is a large “uni-

2 Obviously, these things would not be true in many sections. Tn hilly or moun-
{ainous areas temperature, rainfall, and length of growing season may differ very
greatly within short distances, whereps in other regions, such as the Coastal Plains
areas, the soilg may be so varied that very fertile and very infertile soils are
jumbled together in a veritable crazy-quilt.
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verse” of uniform conditions, in that throughout the universe the
individual items vary among themselves in response to the same
causes and with about the same variability. With respect to the
selection of sample, the values must be so selected (a) that there
will not be any relation between the size of successive observations,
that is, that the chances of a high observation being followed by an-
other high observation will be just the same as of a low or a medium
ohservation being followed by a high observation; (b) that the sue-
cessive items in the sample are not definitely selected frome diffcrent
portions of the universe in regular order, but are simplypicked at
random so that the chance of the oceurrence of any pasficidar value
is the same with each successive observation in the sample; and (c)
that the sample is not picked all from one portiof, of the universe,
but that the observations are scattered through the‘universe by purely
chance selection.? Where these assumptions arevulfilled, the sample is
designated a “random sample,” and its reliability may be cstimated by
the methods now to be described. O

Taking up the question of how rgli‘a;ble a statistical average really
Is, we must first consider, “What is ‘tHe meaning of reliable?” If we
are interested in corn yield, for exafple, it is obvious that a perfectly
reliable sample would be ongw'vhnse average agreed exactly with the
average vield in the cou.pty.f " But if we sare interested in knowing
the average yield to withif bne bushel, then for that purpese the sample
would be sufficiently, felinble if its average came within one bushel
of the average for the'whole county.

Variations in(shccessive samiples. Suppose that 20 farms had been
Visited at randém, with the results’ already presented. If we wanted
to find outhgw near we eould expect the average from that sample to
come to, the average for the county as a whole, we might try taking
anothér\sample—visiting 20 other farms gt random, and getting the
a}{gfage vield for those 20, If the average yield of the second sample

oodifiered from the average of the first sample by, say, 3 bushels, we
ghould know that both could not come within one bushel of the true
average; if, however, the average of the second sample came within s

% Where the items are 50 gelected as to represent different portions of the uni-
verse, it may be called a “stratified sample”; where they sre all selected from one
portion of the universe, jt may be called g “spot” sample,

Where the universe is not, complotely uniform, 8 “stratified” sample tends to be
more refiable than a random sample, while a “spot” sample tends to be less reliable
than a random sample. Sce G. U, Yule, Iniroduction to the Theory of Statistics,

DP. 347 1o 349 of sixth edition, for formulas as to the reliability of stratified and
gpot samples. '
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half bushel of the first average, we should be inclined to place more
confidence in it. If we repeated the process several times over, and
all the different samples had averages falling within one bushel of
each other—say between 29.0 and 30.0 bushels—then we ghould feel
pretty certain that the average yield for the county as a whole was
29.5 bushels, or very close to it.

Let us suppose that 15 more samples had been made, each from 20
farms sclected at random, and that when we tabulate the 16 averages

from the 16 different samples, we have the following 16 values: N\
TABLE 7 R\,
N\
AvinraGgE YIELD of Corn 1 Oxe CouNTY, A8 IJETERMINED RY 16 I)l‘F_FERENT
Savrres oF 20 Farms Baca R ~N
: : Mj\\
Sample Yield Bample \  Yield
Bushels per acre ¢* Bushels per acre
1 30.0 g\ 30.3
2 27.5 s 28.9
3 20.3 o\ A1 29.3
4 30.6 AN 12 28.0
il 29.8 SIS 13 29.2
i 31.1 g 14 50.9
7 28.3 15 29.1
8 20. 6\ 16 30.4
. \\ .~

Although the 18 _sdverages range all the way from 27.5 bushels
for the smallest t¢*311 bushels for the largest, we can see that most
of them fall arouiid*29 or 30 bushels. This is even more evident when
we arrange 6,16 reports in & frequency table as shown in Table 8.

Althm}gh'\trhere is some tendency for the averages to cluster around
29 and 30 Bushels, still there are several below 28.5 and several above
30.5 " Fhe average for the whole group is 29.5 bushels, and the stand-
ard Héviation is 0.99 bushel, or, for practical purposes, 1 bushel.

The fact that the standard deviation of the group of averages is
1 bushe! tells us one thing about the way they scatter, from what we
alrcady know about the meaning of standard deviation. It tells us
that. sbout 68 per cent of them will fall in the range between one
standard deviation below the mean of all the averages and one stand-
ard deviation above the mean. In this particular case, the mean is 20.5
bushels, and the standard deviation is approximately 1 bushel, so the
range of one standard deviation above snd below the mean includes
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~ approximately 28.5 bushels to 30.5 bushels. Checking this against
the array of averages shown in Table 8, we find that this range does
in¢lude 10 out of the 16 cases, or close to the proportion expected.

TABLE 8

FrequENcy TABLE SuowiNg THE NUMEBER oF TiMES VARIOUS AVERAGE Yirups
WERE OBTATNED oUT OF 16 Samrrss, By ONB-HALF Busurn (Jrours

. Number of aver- | . Nurahor, &f hvor-
Yield of eoru ages in group Yield of eorn ag (;SsiE Moup
1e
A 7'\
Bushels Bushels B
27.5-27.9 1 29.5-29.9 ™ 2
28.0-28.4 2 30.0-30.4 , fs, 3
28.5-28.9 1 30, 5-30,8\\ g
20.0-29.4 4 31. -8\ 1
z.{\ 7

Now let us go back to our single original average of 30 hushels, based
on visits to the original 20 farms. What we want to know is how reli-
able that one average is. Stated andther way, how much is that average
likely to be changed if the study were made over again—if another
sample of the same size wergrtaken? '

In Tables 7 and 8 weshave seen how it might actually work out
if we did do the stugii\over scveral times. We have seen that, in
case the new averdgés'did fall as shown in those tables, two-thirds of
the new averagebwould fall within a range of 2 bushels. Further-
more, those figiites showed that all the different averages fell within a
range of 4 blghels (275 to 31.5). But those conclusions were obtained
only after gétting 15 more samples of 20 cases each, and making 15
new a}écages, one for each sample. Ts there any way to find out how
mq@}'gthe gingle original ig Likely to vary from the true average without

;«g(?'iiflg to all the work of taking a number of new samples?
\;
Estimating the Reliability of a Sample

If we could estimate the extent to which

the averages from new
samples would be likely to vary,

without ever getting the new samples,

if in the present case we knew that, if we did

go out and get a large
number of new averages (such as those

shown In Tables 7 and 8),
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those new averages would have a standard deviation of 1 bushel, this

fact would tell us at once something ahout how much our one average

was Hikely to be different from the real average on all the farms. For

example, we should know that about 68 per cent of the averages would

lie in a range of 2 bushels (one standard deviation on each side of the -
mean of the samples). The one particular average which we had
obtained might be any one of all those in a distribution like that shown
in Table 8 If we assume that the mean of all the samples would
coineide with the truc average, then, as we have just seen, the chances,
would be about 68 out of 100 that our average was onc of the averages
falling within one bushel of the frue mean. If on the other hand_we
knew that the standard deviation of a group of new averages yould
probably be, say, 5 bushels, then we should know that we~~hniy had
about 2 chances out of 3 of the mean of any one sample ,cc}nﬁing within
five bushels of the truc average. Obviously, when ammaverage has 2
chances out of 3 of coming within one bushel of thé\lrlie average 1t is
much more reliable than if it had 2 chances out/of\d of coming within
five bushels of the true average. y \

Whether we can judge how reliable @ygiven average really 1s
depends, therefore, on whether we can t‘el}'w”hat would be the standard
deviation of a number of similar awerages, computed from random
samples of the same number of items drawn from the same universe.
It we could tcll exactly what hat standard deviation would be, we
should know how much faithywe could put in the average we had—
we should know what the{ehances were of its being changed if the
study were made over Even if we did not know exactly what the
standard deviationsoflie whole group of similar averages would be it
would be some 'hplp“if we knew approximately what it would hbe, or if
we had a minigmMm or maximum value for its size, so that there would
be some measrc of how much trust to place in the particular average.

Computing the standard error. Fortunately, it is possible to esti-
mate. .x:gil:h ‘some degrec of accuracy what the standard deviation of a
whole series of averages is likely to be, if each average is computed from
a sample of the same size and drawn from the same universe.* Except
under the exact assumed conditions, which are seldom completely ob-
tained in practice, this estimate is not necessarily the best that could be
made. Even so, the ability to make a rough estimate is a tremendous
aid to statistical investigators, for it affords some check on the de-
pendability of results, without going to the expense that would be

4 Note 1 of Appendix 2 gives the derivation of this formula and shows the spe-
cific assumplions on which it is based.
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involved in repeating every sample 15, 20, or more times, to make sure
that a reliable result had been obtained,

The method for computing the estimated standard deviation of the
average involves just two values. - These are (1} the standard devia-
tion of the items in the universe from which the sample was drawn
and (2} the number of items in the sample. We do not know the
standard deviation of the ifems in the universe, however, and can only
estimate it from the standard deviation of the items in the sampte.
It has been determined that an unhiased estimate of the standard
deviation in the universe can be made by adjusting the standard

deviation ohserved in the sample as follows:® ¢\
7N ¢
Estimated stand. dev. of the universe ;“:", ’ _
= (obscrved stand. dev. in ¢he'sample) (\/Ll)
b 4 n ——

.In this case

AN
= 3.79VEg = (3.79)(026)

= 3.80
The standard deviation ‘af': the group of averages may next be
estimated by dividing the “estimated standard deviation in the uni-
A -

® Using the symbo a{@g’ before to mean the standard deviation observed in the
mple, and 7 {0 répresent the estimated standard deviation in the universe from

which the sample. yag drawn, we can define the estimated value as

A\ ¥
\ ”
:"\ & = _ )
\'\\“ F=0 — (6.1}
I:tL {szay mare readily be computed by the equation

\™
\ Pt

fn—1

(6.2}

The two equations are identieal, as ma
(4) and (8.1).
When equation (5) is used, 7 may he computed

- ZX: — pM2
Fo= A ©.3)

n—1

¥ readily be proved by combining equations
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verse by the square root of the number of cases in the sample. Thus,
for our original sample of 20 farms,®
Standard error of the average

_ eatimated standard deviation of items in the universe

square root of the number of cases in the sample

_ 3.89 bushels

+/20

_ 3.88 bushels N
T 447 ' .

. &\AH
= (.87 bushel NN °

N

Tn eomparison with the 15 other averages, all shown i;}iT'é,ble 7, we
sec that in this case the standard deviation of all the&verages was a
trifie larger than we estimated it was likely to hal20.99 bushel, as
compared to 0.87 bushel expected. It has already been noted that
where a number of repcated samples are a{tu\a ly taken, this may
easily oceur. In practice, sampling rarely{ fulfills all the conditions
on which the mathematical formula is based, and for that reason an
average may be either less or morg’jhccurate than the cstimated

¢ Here the symbol ¢ denotes the standard deviation ss. before, the subscript z
indicates that it is the standard deviation of the individual items that go to make
up our sample, and the subscript-‘glﬁndica-tes that it ia the standard deviation of the
means which is to be computged,thus:

N\
Tz standard deviation\of the items in the universe, estimated by equations
(6.1), (6.2),/08N8.3).
sar = estimated sthudard deviation of the group of averages if similar samples
were refeated = standard error of the mean of X.
The standa\d&,fcur of the mesn is then given by the formula
S

[z

3 @)

*

S oM, =
A V;

)
cr‘e," just as in the previeus formulag, = stands for the number of items in the
original sample~-the same items 28 those from which o was computed.

In some statistical textbooks, a diffcrent motation is followed from that used
here. In those books the Greek letters are used to represent the frue values existing
in the universe, whercas corresponding Latin letters represent the values for the
same constants as determined from a particular sample. In this notation o, would
mean the true standard deviation in the universe, whereas s, would mean the stand-
ard deviation observed in a sample. This use is referred to here for the information
of students who may have ocsasion to refer to other texthooks using this other
notation.
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standard deviation indicates that it is likely to be. Even so, this
estimated “standard deviation of similar averages” is an exceedingly
useful figure. Such an estimated standard deviation for an average
(or any other statistical measure) is called the standard error of that
average (or other statistical measure). It serves as a standard measure
to give warning of about how much that sample may give results
which vary from the true facts of the universe, solely as the result of
chance fluctuations in sampling. Tt gives seme indication of how
much confidence can be placed in the measures computed from a
gample, N
Reliability of small samples. Where there are only a smail num-
ber of observations in the sample, the standard deviaiow of the
averages from a series of such samples tends to be semi¢what larger
.than the standard deviation estimated by means of, eguation (7.1),
and the distribution of the averages from such small samples tends to
be somewhat different from that for large samples. If therc arc 30
or more observations in the sample, the diffevence is so small that it
may be disregarded. The farther the UJ}leI' of observationz falls
below 30, the more serious the diﬁ‘ergnc:e*. A correction has therefore
been worked out, by higher mathematiés, to allow for this error in the
estimated standard deviation wheréthere are less than 30 observations.
‘This correction is shown by co;npfé,fing the difference between the sample
mean and the true mean of'the universe with the estimated standard
error of the mean, and by indicating in what proportion of repeated
samples of the same size’ this ratio will exceed given values. These
proportions are showaMn Table A and in Figure A on page 505.7
The table shows the proportion of the trials in which a sample of

- each given sigglwill have an average which differs from the true

average by ygore than the specified range. Thus, if there are a large
* Table A npplies as stated only in the ease of measures such as the arithmotic
averdge, which are computed from the original data by the determination of a
,Sifigle’ constant, Where the computation of the statistical measure involves simul-
taneously determining two constants from the original data, n ~ 1 should be used
for the “number of chservalions in the sample.” This applies to the coofficient of
regression. -Where the computation of the ‘shati
necusly defermining a large number of constants, sy 7 in number, from the oripi-
nal deta, then (n —§4 1) should be used for the “number of ohservations” in
entering Table A or Figure A. Thus for 2 coefficient of partial
obtained from & ssmple of 20 ohservations, § constants are involved, so 16 would
be used ag the “number of observations”

i in using Table A to judge the reliability
of the computed value. {Bubsequent chapters will explain the meaning of {he now
coefficients mentioned here.)

stical messure involves simulta-

regression, bys.g.p
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number of observations in the sample, and we state that the true
average lies within one standard error of the computed average, we
should be wrong for 3 out of 10 such statements. {The exact propor-
tion expected is 317 out of 1,000.) If there were 20 observations in

TABLE A

PrororTion oF REPEATED SamriEs 1 WrIcE TeE Ratio of Tar ERROR IN THE
Meay 10 1HE ESTIMATED STANDARD ERRCOR OF TBE MEan Excozps THE Valur
SrECIFIED IN TEE LEFT-HAnp CoLuMy, For VARIOUS 81288 OF SampLE*

Ratic of the crror in the Size of sample (2) O\
mean to the estimated PN e
standsrd error of the \j/80 or
mean 2 ¢ 6 10 16 (20:' more
4
0] 1.0000 |L.0000 [1.0300 (1.0000 1.0000}']0000 1.0000
.50 7048 | L6514 | 6382 | 6200 | Je244 | 6228 | L6171
1.00 5000 | -3010 | .3632 | .3434.1\,8332 | .3208 | .3173
1.50 L3744 | 2306 | (1940 | . 16(2: > 1544 | L1500 | .1336
2.00 L2052 | 1394 | 1020 R ON0T66 | (0640 | (0600 | .0455 .
2.50 L2422 | 0878 | L0544 § 0338 L0246 | L0218 | (0124
3.00 L2048 | 0576 | . 0300 T0150 | 0090 | L0074 [ .0027
3.80 L1772 | L0894 .0172 L0068 | 0032 | 0024 | .0005
4.00 L1560 | 0280, }’0104 L0032 | L0012 | L0008
4. 50 L1302 | 0204\, 10064 | L0014 :
5.00 1256 | | 31"54 .0042 | .0008

i Bazed on article by "Studenb&% e'n: tables for testing the significance of observations. Mefron
¥, No. 8, 105-120, 1025, Y

# Bac Figure A, Appendix 3. ff’ full set of valnes.
the samples, and Me“made the same statement, we should be wrong
33 times out NO For samples with only 2 observations, such a-
statement w ld be wrong 50 times out of 100, on the average.

The estamated standard error of 0.87 bushel from our single sample
of 20 c&ses, with an average of 30.0 buchels, would therefore tell
us Hﬁt “67 per cenb of such samples would have averages which fell
withifi a range of 0.87 bushel of the true mean. If our sample is &'
true random sample, we should then have 2 chances out of 3 of being
right if we estimated that the real average yield for all the farms
in the county, the year the sample was taken, was within 0.87 bushel
of the average shown by the sample.

Tt is important fo keep in mind that the probabilities shown in
Table A refer to the ratio between the error in the mean and the
estimated standard error of that mean, and not to the error itself.
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The size of the ratio will depend both upon the size of the error and
the size of the estimated standard error. At times the ratio may be
very large, even when the error in the mean is small, merely because
the sample happened to be one that showed an cxceptionally small
gtandard deviation. Conversely, the ratio will at times be small,
not because the error in the mean is small but because the sample
happened to be one that showed an exceptionally large standard
deviation. For this reason it iz well to be cautious in interpreting
the average from a very small sample, even though that sample gecms
to be very reliable, as judged by the size of its estimated gtandard
error and by the probabilities of various departures from:\ the true
mean, ag read from Table A. This brings up the subgect of the
standard error of the standard error, which is treated i™be next para-
graph. &0

Standard error of the stondard error. A.pfiall sample (say of
30 cases or less) cannot serve as a satisfactompnuide to the facts of
the universe, even with the aid of Table Ay With a small sample,
not only do we not know the true value (}f the mean, hut also we do
not know the true valuc of the stardaid deviation from which we
estimate the standard crror of the wdetin, Our estimatc of the stand-
ard errer of the mean is itselftsubject to error. With very small
samples, say of 5 to 10 eases, ‘t{us introduces a degree of unreliability
which no amount of caleulstion can fully correct. The results are
uncertain within wide dimits, and only a larger sample, or several
suecessive small samples, can reduce that uncertainty,

The standard etror of the standard error, gfated in relative terms,

depends solely, Gpon the number of cases in the sample, It i com-
puted as follows:

Relatlvg\%ghda_rd crror of the standard error 8
K\ 1
N\ square root of two times (number of eases in sa,mple =1

o's

8Ussmg; “ear to represent the relative standard error of the estimated standard
error, we may define it

. 1
Fopy = ———0— 7.2
Van - 1) _ 7
A slightly more accurate estimate can be made by use of the equation
1

T VamoD

The ﬂjfferences between the fwo equations are, ho
wover, negligible. See W.
Edwards Deming and Raymond T, Birge, On the statistical
\ theory of , Reviews -
of Modern Physies, pp. 118-161, Vol. 6, July, 1934, Ty of ervoms, Revie
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For cur sample of 20 cases
1 1

TVe@ -1 V3R
— 0.162

The standard error of the standard error, for the sample sizes
shown in Table A, is given in Table B.

TABLE B* .

s A\

RErarive STANDARD ErsoR or 7HE EstiMaTED STANDARD ERROE OF THE.MEAN,
FOR VarvING Sizes oF BaMPLE « N\

Relative standard ¢

Size of sample error{

2 0.707 (N
4 0.408~\
6 0.516V

10 04236

16 00,183

20 ~0%0.162

™\
.

* Faotnota 7, on page 22, applies to Ts,bk;'B as well.
T Btated a5 » proportion of the estima;hd standard error.

Table B illustrates hoy&\f,\with very small samples, even our estimate
of the standard errq(’éf the average is subject to a wide zone of un-
certainty. With ,{gascs, its own standard error is 41 per cent of the
value computeds®

Q "
O " Meaning and Use of the Standard Error

ft\ {s good statistical practice, whenever an average is cited, to
give with that average its cstimated standard error, so that the reader
will know about how significant that average is and not be led into
using it to make comparisons or to draw conclusions that are not justi-
fied by the number of observations which are summed up in that
average. One way of doing this is to write the average followed by
the statement “plus or minus the standard error.” Thus, in the ease
we have been considering, with the single sample showing an average
of 30.0 bushels with a standard error of 0.87 bushet, and with only 20
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cases in the sample, the correct statement is to say “the average
vield has been shown by the sample to be 30.0 == 0.87 bushels (20
cases).” ® If a similar sample from a different arca has shown the
average yvicld to be 28 + 2.0 bushels (20 cases), the reader would
know that there was a fair chanee that the true average vield was
really the same in both areas, in spite of the difference shown by the
two averages.

The greatest value of the standard error does not lie in merely
indicating how near the sample value may come to the true valu@jior
two samples out of three, on the average of a number of suchssamples.
In exactly the same way that we have seen that two-thixds’of the
averages from the samples usually fall within one standard deviation on
either side of the true mean, mathematicians haveldetermined for
large samples that 19 out of 20 (95.45 per cent) &f‘the samples will

- give averages which fall within #wo standard deviations of the mean,
369 out of 370 (99.73 per cent) will usually fal} ‘within three standard
deviations of the mean, and all but one‘qiase out of 16,667 samples
{99.994 per cent) will usually fall within'four standard deviations of
the mean. R

When there are less than 3¢ observations in the sample, the
tendency of the ecomputed standard error to be misleading is even
greater for high odds than jfNs for lower odds. Corrections fo take
this into account are also§hown in Table A. Thus, with samples of 20
cases, 6 samples outcof \10O will give averages differing from the true
average by more ths}f twice the computed standard deviation, and 7
samples out of 3,060 will miss the true average by more than threc
standard devia};ibns. This last is three times the proportion of such
failures “fh\iféh would occur in the long run with samples of over
30 observations, With very small samples, the failures for high
odds,qfwfur even more frequently. Thus, for samples with only 4

_gpﬁe('vat-lons, 14 samples out of 100 will differ from the true mean

? The most general practice is fo write after the average = 6745 timeas the stand-
ard' error (0.59 bushel in 1his case, so the statement would vead 30.0 = 0,50 bushels)
This value, 0.87450y, is ealled the probable error of the mean since ’it giv;s the.
range wi_thjn which the chances are even that the true mean lies w'-hen there are
more than 30 oheervations—and also the range witkout which the ;:hances .are even
that the true mean lies. Since this tends to make th

: practice sugge, i

error.instfead bas been recommended by many cnmpegtirftte s(iaﬁ#l,liilizisth%;tl?;giﬁ
that is done, however, it would be well to insert a. footnote explaining i;hat it ie‘th‘r\
standard error, and not the probable error, which is being shown sfter the sign ;‘i "
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by twice the computed standard error, and about 6 out of 100 will
differ by threc times the standard error, on the average.

Where high reliability is desired, and only small samples are avail~
able, it s very important to take into account the corrections shown
in Table A.

Interpreting the standard error in the llustrative problem. Ignor-
ing for the time the lack of complete accuracy in our estimate of the
ctandard crror itself (page 24), we can interpret the gtatement that
the average vield in the area studied was 30+ 0.87 bushels in an
of the following ways: *° Q

«. If we state that the truc mean lies within one. standard etror
of the chserved mean (between 20.13 and 30.87 bushels, in this chge)
each time we use & sample of this size, we shall be wrong inour state-
ment one time out of three, on the average. A\

b. If we state that the true mean Hes within two,tisj:andard eITOTS
of the observed mean (between 28.26 and 31.74 bushels) each time we
use a sample of this size, we shall be wrong inp&r;statement one time
out of 17, on the average. K¢

e. Tf we state that the true mean lies ,wtithin three standard errors
of the observed mean (between 27.39 and 32.61 bushels) each time
we use a sample of this size, we shall“be wrong in our statement one
time out of 135, on the average. %

4 Tf we state that the true mean lies within four standard errors
of the observed mean (between 26.52 and 33.48 bushels) each time we
use & sample of this =iz @re Jshall be wrong in our statement only one
time out of 1,250, on the &verage.

Comparing thesg'{zohclusions with the 16 samples shown in T?nbl.es
7 and 8, we seg dhat 2 of those samples did fall outeide the limits
given by twi.cé;}he cstimated standard error. If we _ha.d been 8o
unlucky ag-th have got the worst one of these as our single sample,
instead ofithe one which we actually did get, then we should not have
hit Ab& verage even if we had used a range of twice the computed
standard deviation as that within which we expected the true average
to fall. On the other hand, every one of the averages fell within tt}e
Tange eovered by three times the standard deviation. Even if, in
picking our single sanaple, we had been unfortunate enough to draw

the poorest one of the lot—-the one which gave an average yield of

97 5 bushels—and had used a range of three times the standard error,
we should have been correct in our statement as to the range within

10 Wigure A, page 505, which gives in more detailed form the corrections shown

in Table A, may be used to work out these odds.
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which we expected the true average to Hie. Then we should have con-
cluded that the true mean fell somewhere between 24.3 and 30.7 bushels,
which would have been wide cnough to include the real mean. Of
course, if we had taken four times the standard error, we should have
been almost absolutely certain of including the frue mean in the
stated range, with only one chance in over 1,000 of being wrong.

In most statistical work, three times the standard error is taken
as the greatest extent to which a given observed constant is likely to
miss the true value for the universe. Even though there is aboubonc

~ chance in 370 of being further off than this with samples of 30 or\thore, .

most scientists are willing to take the chance that their sample is not
that one exceptional case. For exccedingly important worR, or where
absolute accuracy of comparison is essential, even foyt times the
standard error might be used; but for the general Irn of statistical
problems, and with fair-sized samples, it would(8¢em safe to regard
three times the standard error as about the {afgest extent to which
the conclusions might be out solely becawge’@j‘ the chances of getiing
an ynusual sample in random sampling.., x\ )

In view of the possibility of the standdrd error itself being in error,
however, the number of observationsshould always he stated, as well as -
the standard errer of the constami, particularly where the sample is
smiall. N

Bias in sampling. Thefigure ag to standard error tells nothing at
all of how much errorthere may be because of bias in sampling.
Thus, if in taking duf $ample of 20 farms, we had visited only the
largest farms withhthe most prosperous-looking buildings, we should
be very likely taget & sample which was not representative of ail the )
farmers in t}l county, but simply of the better ones, and so might get
an average\yield, say 10 bushels, above the true average for the
county ~JKven if we only selected our farmers to the extent of includ-
ing.@hc,se which were most willing 40 give us the figures we wanted,
& ‘might have a badly biased sample, as usually the best farmers
apd the most intelligent ones are most willing to answer such questions.
We mus.t depend largely on common sense and on other knowledge
of the situation we are studying, and not on statistical computations,

to tell us whether or not our sample is really representative of the

u.niverse we want to study. Thus we might compare the average
size or value of the farms

: ] in our sample with the averages for all the
arms in the county, as shown by the census reports, to see whether

they were representative or not. All that the computed standard
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error can tell us is about how closely it is likely to approach the aver-
age (or other characteristic) of the group it does ectually representi—
whether that group is the one we meant it to represent or only a part
of that group. This caution must always be kept in mind in using
samples: Computed standard errors tell us how far cur results may be
off solely because of the chance of getting a poor sample with a limited
number of cases; but they do not tell us how far we may be off because
of a biased sample, which is not a fair selection from the universe we
wish to study. O

Deciding on the size of sample necessary to obtain a stated
reliability, One other application of the standard-error formula-Te-
mains to be mentioned. The way in which this formula can bé used.
to estimate the relisbility of the average from a given gdniple, when
the number of cases is known, has already becn explaiged The same
formula can be used to determine how large a gafaple would have
to be taken in order to secure results within ar}xr.easonabie assigned
limits of accuracy. O

Thus it has already been shown that jch}ex\records from 20 farms
could be used to say that the true average yield lay somewhere
between 27.39 and 32.61 bushels, with ebout one chance in 135 of
that statement’s being wrong. How\many farms would one have fo
visit to state the same average yield to within one bushel, with the same
chance of the statement’s being wrong? The same formula which
was wsed to determine, {hg)standard error of the average can be
turned around to answer His question also. -

If we know that we)want to get an average reliable to within one
bushel, for a rangb el three times its standard error, then we know
that the standatd»error of that average would have to be only one-
third of a b}lsbae]t We may also assume that when we take our larger
sample, the Standard deviation of the yields on the individual farms
will befound to be not very different from what it was in our sample
of 20%enses, and so use the same standard deviation as we did before.

Téking the relation which was used in computing the standard
error before, we have:

Iz

GM:‘\/’E

Tn the now case we have the required standard error given, 14
bushel; we are assuming that the estimated standard deviation for the
universe from our larger sample will be 3.89 bushels, just as 1t was from
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our sample of 20 cases. Substituting these values in our equation, and
using »” to represent the number of cases required in the new sample,
we then have

3.89 bushels

When the terms are shifted around, this becomes

% bushel =

= _ .89 bushels )
/?3_ = -———-% v 11.67 \

Hence ' O\
n' = 136.2 O .

We therefore conclude that if a sample of 136 reports were ob-
tained, we should probably get an average yield whith-would not differ
from the true average yield for all the farms byd?bre than one bushel
in more than one such sample out of several hundreds of such samples.
If any other limit of error was set, we cop’[ds\gimilarly determine how
many reports would probably be necessary to satisfy that limit.

In these computations we have igneted the standard error of the
standard error. If we took into aedpunt the possibility that the true
standard error might be largen than our computed standard error,
we should need a still larges sample to be sure of the accuracy
specified. A&

Standard errors fop-ether measures. This whole discussion has
been in terms of defémmining how closely it was possible to approxi-
mate the true aderafe from the average shown by a sample. In
exactly the san@ Way standard-error formulas have been worked out

~ indicating h vrclosely it is possible to approximate the true values
of other stafistical measures (such as standard deviations, for exam-
ple) f;; ‘the values for those measures determined from 2 sample
These) are interpreted in much the same way a8 are the standard

Ngfzfpi's' of averages; they will be referred o in subsequent chapters.

9
' Universes, Past and Present

Any statistical measurement relates to something that is already

past by the time the measurement can he analyzed. Thus our records

1 The Standa.rd error [)f a8 tandﬁl d de V latlon L may b a roxmat I}' de“*l -
T, 5
( ) € approx €

Tz
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of the yield of corn obtained must relate to some crop that has already
been harvested. Yields for a erop still growing could only be fore-
casts, and could never be precisely accurate until the crop was har-
vested and was weighed or measured. Yet human beings cannot live
in the past. Qur measurements of past events can be of meaning to
us only when we project them into the future, and use them as a guide
to future conduct. In studying the yield of corn, for example, the
actual realized yield of corn in a eounty in a given year, no matier
how accurately measured, is already a matter of history. The only™
thing that can be significant in human affairs is the average yield in
some futurc year, still to be produced. If we are plarning an {(ﬁh
control program, for example, and wish to estimate how many’acres
will produce a given total bushclage, we shall always be dealing with
future years, We ean do nothing to-change the past) Only the
future can be affected by our actions. When we fake the average
vield for a past year as our “universe” to be studiedy,what we are really
interested in knowing is usually something aboufthe yield most likely
to be secured in one or in a series of yea’r} in the future. Even
if we took a census of the yicld on all the farms in the county, we
should not have all the facts about ourtric universe. That universe,
whose values we really wish to estiinate, is composed of the yields
next year and in other ycars stililto come. Measurements of condi--
tions in the past, no matter hg¥ accurately made, can serve only as
one part of the basis Ior,jﬁ@ing what the values in ‘the future are
likely to be. Analysig o‘f\ﬁﬁat has happened in a succesgion of years
in the past may help 1 to make & better estimate of the future. Such
analysis may showa-steady upward trend, or & variation from year
to year with rainfaﬂ, or other variations whoge cause we do not know.
But beforc wé_pan project the past trends into the future, we must
understand{shat cauged them, and judge whether those eauses witl
continuo\'%ﬁ‘ operate. These judgments are not a matter of 'statist?cal
anad¥als’as such byt must be based upen scientific and technological
studiof all the forces at work. Thus a steady upward trend in
cotton yields might reflect a rising price of cotton in the period studied,
and a resulting increase in the quantities of fertilizer applied per acre.
But equally well it might reflect a steady deerease in the total acreage
(due to crop eontrol or other causes) and a concentration of the re-
meining acreage on the better lands. Or it might reflect the gradual
adoption of improved strains. A forecast of whether - the upward
trend would continue into the future would be materially different
in the three cases. Besides the statistical facts, it would involve
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non-statistical judgments as to whether the increase in price or the
limitation of acreage or the improvement in seed was likely to continue.
' Whether we are dealing with the statistical eharacteristics of
people or of crops or of prices or of atoms, the real universe. for which
we wish to estimate is the universe of future events. Our ability to
forecast those events will differ widely from field to field. Presumably
the characteristies of atoms or of chemieal ecompounds will be less
subject to change than will those of crops, and erops will be less sub-
ject to unpredictable change than will prices. In each case, hogever,
the statistical information gained from the study of past sample® must
be tempered by other knowledge of the situation, based ont sty and
analysis which may be quite non-statistical in nature. When we move
from the facts of the past tc forecast the unknown{imiverse of the
futuré it is not the statistics but the stafistician{iho iz on trial
Unless he mixes an ample measure of anthropoib’g'y or agronomy or
economics or other appropriate scientific information with his statistics
—plus a liberal dash of common sense—Hemay find his analysis of
past events g detriment, rather than an aﬁ: in judging as to the future.
Summary. This chapter considers.the question of how far statis-
tical results derived from g selecte@ “sample” drawn from & umiverse
can be used to reach general‘cphhlusions as o the facts of the entire

_unrverse, SN\
The confidence which dah be placed in any measure eomputed from
a sample, say an avefige, depends upon how closely that average
is likely to come tb the true sverage of the whole universe. One
way of determinifigy that would be to collect additional samples, each
of the same sized/From the way the averages from each of these differ-
ent sa.mp!ES\varied one could judge how near the average from
any one\s@‘mple was likely to come to the true average. For samples
Whi.e‘h"(ﬂ;eet the conditions 6f simple sampling, another much more
?gpld’way is to eompute the standard error of the average, which
"u}dmates the minimum extent to which the average is likely to be
gorrect. _Witl_l samples of over 30 cases, the true average will prob-
ably be within twice the standard error from the ohserved average
for 19 samples out of 20, and within three times the standard error
i?goﬁéges out of 370. This is the minimum error; where the number
vations is smaller, the possibility of error is larger, as is indi-

cated by Tables A and B.

The same formula can be used to estimate how large a sample

must be taken to secure any desired degree of aceuracy in the final
average, '
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The estimated standard error does not take Into account bias in
selecting the sample, but only shows the chances of reaching incor-
rect regults even when an honest random sample is oblained.

Even after the values in the universe have been estimated from the
facts shown by the sample, the statistician must still remember that
that universc is a past universe. In applying that knowledge to prob-
loems of future action; he must give due allowance to the fact that the
yet unborn universe of the future may never be identical with the
past and dead universc from which his sample was obtained.
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CHAPTER 3

“THE RELATION BETWEEN TWO VARIABLES, AND THE
o - IDEA OF FUNCTION

) ~ -
Relations are the fundamental stuff out of which all seience isbuilt.
To say that a given piece of metal weighs so many poundsgis o state
a relationship, The weight simply means that there is g;@-értain rela-
tionship between the pull of gravity on that piece ofvaetal and the
pull on another piece which has been named the “potnd.’” We can tell
what our “pound” is only by defining it in termS‘:})f gtill other units,
or by comparing it to a master lump of metalearefully sheltered in
the Bureau of Standards. If the pull is t.w&e as great on the given
piece of metal as it is on the standard pousd, then we say that the lump
weighs 2 pounds. If, further, we say i"Weighs 2 pounds per cubic inch,
that is stating a composite relationghip, involving at the same time
the arbitrary units which we-use 4 easure extent or distance in gpace
and the units for measuring th \gravitational force or attracting power
of the earth, . o
Relations between ydriables., Besides these very simple relation-
ships which are imp{'ﬁz@‘iﬁ all our statements of numerical deseription
—weight, length, tempersture, size, age, and so on—there are more
complicated relatronships where two or more variables are concerned,
A variable i3 &1y numerical value which can assume varying or differ-
ent, valueg.{n successive individual cases. The vield of corn on dif-
ferent ‘f 8 1s & variable, since it may differ widely from farm to
farrfa, A\ 8o is the length of time which a falling hody takes to reach
’ihexgarth, or the quantity of sugar that can be dissolved in a glass
\c;ﬁ water, or the' distance it t-ake_s for an automobile to stop after the
'rakes are applied, or the quantity of milk that on¢ eow will produce
e 2 e Y2 o
; quotation. In contrast to these
vamblesr there are o’Eller numerical values called constants, beeause
they never chz.lnge- Thus one foot always containg 12 inches; one
dollar always is equal to 100 cents; and a stone always falls 16 feet
ecified conditions). Science, of

in the first second (under certain ]
any sort, ultimately deals with the relation between variable factors

34
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and with the determination, where possible, of the constants which
deseribe exactly what those relationships are.

The variables which have been mentioned may be used to illus-
trate the way in whieh changes in one variable can be related to
changes in another. Thus the Jength of time which a falling body
takes to reach the earth varics with—that is, is related to—the distance
through which the body has to fall. The quantity of sugar which
can be dissolved in a glass of water varies both with the size of the
glass and the temperature of the water. The distance it takes for an-
automobile to stop after the brakes are applied varies with the speed
with which the car is traveling when the brakes are applied, the ‘area
of braking surface on the drums, the area of tire surface on 'th,e‘ road,
how tightly the brakes are applied, how much the car geighs, the
kind of road, and so on. ' D

Then when we come to variables like the produeﬁnn of milk or
the income on a given farm, or the time to memarize a quotation,
we find the situation still more complicated. ,H\s\v much milk a cow
will produce varies with her age, breed, inherent ability, and the
richness of the milk, and with the kind,{quality, amount, and com-
position of the feed she receives, thgjvi?ay she is stabled and cared
for, and many other similar factor®s Similarty the variables which
may affeet the income on a farmS¥he size, the equipment, the erops
grown, the livestock kept, th€ methods followed, the costs paid, the
prices received, the rainfau‘;,\&re so numerous that it would take an
entire book merely to fiband discuss the different factors affecting
this one single variablédy The time it takes to memorize a quata'tion
may be affected bg,f\if.é length, the subject’s age, sex, training, fatigue
or freshness, hisdapiliarity with the material discussed, and his interest
in the topic.\ )

Yot it & procisely with relations between complex variables that
many gt@fti%tical studies must deal, The statistical methods- which may
be gited4o handle such problems can best be understood if presented
first\or the simplest cases, and then expanded to cover the more com-
plicated ones.

Suppose a physicist, knowing nothing about the exact nature of
the relation between the distance a body has to fall and the length of
time it takes, made some experiments to determine the matter and
obtained the results shown in Table 9.

Looking over these figures we see that there is some sort of general
relation between the two. As the distance increases, the time increases
alse. But that is not uniformly true, In one case the distance in-
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creased without there being any inerease in the recorded time; in some

other cases the recorded time was not the same even though the dis-

tance was unchanged. .
TABLE 9

BELaTioN BETWEEN DisTancE A MaRrpLE Drors axvp Tous It Tagkus 7o Faun

Distance traveled Time elapsed Distanee traveled Time elapsed

Feet Beconds Feet Secontls

5 0.6 20 O\

Ei] 0.5 20 N\ 1.%

8 0. 20 12
10 0.9 20 N1
10 0.8 26 1.2
10 0.7 25 N 1.3
15 1.0 25 \\V 1.2
15 0.9 25, 1.3
15 1.0 )

Graphic representation of relation” between two variables, We
tan get a better idea of just ex&g‘@ly"what the relation is if we “plot”
it on cross-section paper, so, }.]ﬁat we ean see graphically just how
the time does change with.the* distance. Figure 2 illustrates the way

Time _e:Eapsgd"‘z\
Szwnds\\""
ek Do# for 25 feet ond 13 seconds
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] o
Distence fallen-in feet 5

Fis, 2. Method_ of constructing & dot chart. Time elapsed is the dependent
varinhle, and the distance is the independent varisblec.

this is usually done. The units of one variable, in this case the distance
to be traversed, are measured off from the left, starting with zero in
the lower lefi-hand corner and counting over toward the right. The
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units of the other variable, in this case the time elapsed, are measured
off from the bottom, starting with zero and counting up foward the
top. If negative values are present, then the counting is started with
the largest negative value, deercasing from left to right or from boftom
to top, until zero is reached and the positive values begin to appear.

Where one variable may be regarded as the cause and the other
variable as the result, it is customary to put the causal variable along
the hottom. In this case it may be said that the differences in distance
traversed cause the differences in timc elapsed. Distance, therefore; \
is measured in the horizontal direction, and time in the vertical. Theze
is no particular reason for plotting data just this way except that this
is the customary way of doing it and so it is most readily understood
by other persons. Some relations of this sort can be. reversed, s0
that either may be regarded as cause and either as effecty

Having Iaid off the chart in the way indicatedy we-next “plot” the
individual obscrvations. The way this is done is illbdtrated in Figure 2.
The first observation was that it took 0.6 second for the marble o
fall 5 feet. This is indicated on the chack by counting over to the
5-foot line from the left of the chart, and then counting up along that
line until 0.6 second is reached. A dotik placed on the chart at that
point. As indicated, this dot is at the intersection of the line starting
from the “0.6 second” at the left of the chart and extending parallel to
the “O-sceond” line, with the other line starting from “5 feet” at the
bottom of the chart an a@tﬂeﬁding parallel to the “0-foot” line. Bimi-
larly, the last observasion; 25 feet in 1.3 seconds, is indicated by a -dot
where the horizontalyline representing 1.3 geconds crosses the vertical
line representing, 23 feet.

Entering a~dot for cach individual observation in the same way,
we get thef&m”rt shown in Figure 3. This figure now gives a visual
representation of the way in which the length of time changes a8 the
distanéo traversed changes. Such a chart is known as a “dot chart”
or A keatter diagram.” '

But even this figure does nob show the exact relation between the
distance and the hime: Both the first and the second trials were for
exactly the same distance, yet the time was glightly different. Obvi-
ously that difference in time could not have been due to the difference
in distance between the two, because there was no difference. The
investigator must thercfore assume that some outside cause, perhaps
the accuracy with which the time was measured, may have been

PP- 50 al.‘ld a1,

1 For o more extended discussion of this poiat, see
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responsible for these slight differences. It will be noted, too, that when
the different ohservations are plotted as in TFigure 3, they come

close to all lying along a eontinucus curve.

We also see that the

individual eases do not adhere absolutely to a eontinuous curve. If

we are willing to assume that
observations at ithe same po

all the differenees between the different
int along the curve are due solely to

extraneous factors, we can estimatc the true effect of the distance,
by ifself, by averaging together the several observations as tg time
taken for each of the scveral tests for the same length of*fall A

O\
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Fe. 3. ’E\ké'l:a}‘i(’m of distance 3 marble falls to time elapsed in falling, as shown by

individual observati

4 ~\’ .:
~edntinuous curve draw
the way in which the
average of the ecases studied.

any one individual case, as we have just
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Expressing a functional relation mathematically. The relation
shown by the curve in Figure 3 is what mathematicians call a func-
tional relationship; the time it takes a body to fall is a function of the
dislance which it has to traverse All that this means is that for any
particular distance-fallen, there is some corresponding time-required.
The term “function” means that there is some definite relation be-
tween the two variables, number of feet and number of seconds, but

it does not at all tell just what that relationship is. When, however,

it is said that time is & funetion of distance according fo the curve
shown in the figure, then the statement has been made perfectly c}e\ﬁ-\
nite. The eurve shows, for any given distance, exactly how leng it
will take a body to fall, on the average of a series of trials. .3

In this particular case the function is defined only by, {ﬁhe éraphic
edarve. It may also be stated as a mathematieal expregslfaﬁ

v =1vX N
using X for distance in feet and ¥ for time hi'séconds. This equation
correspouds to the curve in a peeuliar ways i that if any value of X is
substituted in it, and then the value of ¥ determined, that will be the
value of Y-—time in seconds——corgeéﬁdnding to that particular value
of X—distance in fect—as shown by the curve in Figure 3. This
equation iz therefore the eqmaizon of the funection, since this simple
mathematieal expression te\ﬂé"jﬁst- as much about the relation between

the two varying quantities—time and distance—as does the entire

curve in the figure. N\

The way this eatation is used may be illustrated by two examples.
Suppose a maxfile falls 16 feet; how long should it take to fall? The
value of X sould then be 16; substituting this value in the equation,
we have, .\: o

O Y =31Vi6
Y =3@®
Y=1

This gives a value of 1 for ¥, which means that it would Itake 1
second to fall, Suppose again a bomb were dropped from an airplane

2Using ¥ for time and X for distance, we state this mathematically
y = f{X)

5
;
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10,000 feet high. How long would it take to reach earth? The value
of X is then 10,000; substituting this value in the cquation, we have

Y = 1 V10,000
Y = 1(100)
Y =25

The result ¥ == 25 means that it would take 25 seconds for the
bomb to fall? ' \

Tt is evident that the cquation goes much further thap(dges the
graph of the curve. The latter gives the relation between “distanee
and time only for the distances which are shown on ’tlig\’chart. The
equatibn, on the other hand, gives the relation jfr}r anyv distance
whatever, no matter what it may be. It is pessible to statc this
law of gravity, as it ig ealled, \in an equation ehly because physicists
have studied this relation in the past and\détermined exactly how
the one quantity varies with the other, Having found that the same
relation between the two variables heldMhrough their catire range of
observation and having worked ouf\ofi philosophical grounds a good
reason why that relation should hold, they have felt safe in eoming
to the conelusion that 1t will continue to hold even beyond the range
of the experimental veriﬁqg.tidri.“ Where only a graph of the funcfion
is available, on the con{rary, only the relation within the stated range
is known. The grap%;\ﬂaés not tell, of and by itself, the dircction the
eurve would take A extended beyond the limits determined by the ex-
periments. O

Now if i ’s:tgad of the relation we have just been discussing we
cgnsider therelation between the quantity of sugar which can be
dlssol'v‘e@n a glassful of water and the temperaturc of the water, we

A Outside eauses, buch as friction with the ajr, may make the time of fall slightly
\”_:]J}‘fferent‘ from the ealeulated time; therefore with so long a fall as this the time
1ght dlffe.r’gufte perceptibly from the theoretical time given by the eguation.
?}US equation gives the time required when no influence other than gravily is taken
mte ac.cm‘%t, Obvicusly a marble would fall in air muech faster than a feather—
the resistince of the air hag very little influence on the speed of the marble and a
great degf of influence on the speed of the feather. In a vacuum they would fall
at the sake rate. N
_* It shétild be noted that for very great distances—say 10,000 miles—the formula
might nee¥ to be modified, since then the pull of the earth would be less than it is
?:itill}z E:;l;f :e. The equation holdy true only fer those disiances from the earth
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have quite a different problem, and yet one that is similar in many
agpects. I we start to determine it experimentally, we must first
make sure that the quantity of water with which we are working is

the same in every trial; then we must measure acourately both the
temperature of the water and the amount of sugar which could be
digsolved in it. Water expands when it is heated, and it also has a
tendency to evaporate; so we would have to decide whether we wanted
the same volume of water, irrespective of the fact that at a higher
temperature there would be actually Tess water in that volume, ord
whether we wanted the volume of water equivalent fo what would
 be the same volume at a given fixed temperature. (This .wwould

necessitate determining the relation between volume and temperature
for a given weight of water as a preliminary study, orelde using
weight jnstead of volume as our criterion.) Many otherfgimilar factors
which might possibly influence the result would havete be considered
before even the exact plan of the experiment could be drawn up.

Once the experiment had been run the Aufnerical results would
probably be somewhat similar in characfersto those in. the gravity
test. Tt would be found that about thé sume quantity of sugar was
dissolved in a given quantity of wai:ei:fwhen repegted tests were made
at the same temperature, but that ‘he quantities varied stightly from
each other. TIf the data were fn]otted on a scaiter diagram like
Figure 3, it would be four};}’ﬁhat the data fell in the general ghape of
a curve, but that Very\@sﬁ? of the dots fell exactly on the curve,
some lying above and(8eme below the continuous line which eould be
drawn about throngh/the center of them. Again we might conclude
that these slight differences from exact agreement werc due to factors
other than thé femperature of the water—to slight experimental errors
in the qggﬁ}ity or temperature of the water, or to slight errors of
measupément in determining the quantity of sugar—and be willing to
contlude that the line drawn through the center of the series of observa-
tion¥showed the real effect of differences in temperature on the quan-
tity of sugar dissolved, when extraneous influences were removed. This
again would be a functionel relation. The curve would express the
relation between changes in temperature and changes in quantity of
sugar, showing for any given temperature exactly how much sugar
could be diszolved. It might then be possible to determine & type of
equation which would accurately specify the function by a matbe-
matical formula, similar to that discussed for the gravity example, if
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the logical type of relation between the two variables could be worked
out.’

Determining a functional relation statistically. In the two cascs
which have been discussed the relation between the two variables was

. sufficiently close so that by taking proper experimental precautions

other influences which might affect the result could be largely removed
and a series of observations obtained sufficiently consistent with each
other so that the exact nature of the relation could be readily deter-
mined. In many other types of relations this eannot be done so dasily,
Tt is with this type of relation that statistical methods really\ become
important. _ S

If we were making a traffic study in & given city, for &xample, we
might wish to know what would be the safe speed limits to permit
on different streets. In that connection we might Teed to know in
what distance an automobile could be stoppedwheén traveling at dif-
ferent, speeds, so that by comparing this distande with the width of the
different strects and the length of view atdrtersections we could judge
how fast machines might be able to trayel without risk of collisions
at street intersections. - One way jgo'déterfnine what is the relation
between speed and stopping distahee would be to make a number of
tests in different portions of theldity, taking different typeg of machines
and different drivers. Let us Suppose that as the result of such a series
of tests we obtained the genics of observations shown in Table 10.

5 Some logieal fougcl}b}m is needed before a mathematical equation to a curve
can be of any morg ¥ajue than merely the chart which graphs the eurve. Thus in
the gravity exadplé it is evident that the farther a body falls, the faster it falls; in
every successiveNiastant the speed it has already attained is increased by the offect
of the continyed pull which is added to it. Purely mathematical investigations of
the relut-sbn"betweeu such constantly growing magnitudes and the varisble with
which :«‘;hey grow have enabled physicists to detormine the general mathematical
tyjpg'tf)' which the relation must conform, Then, knowing what the type of the’

Jraune is, we find it to be relatively easy to determing the constants (such as the
“&”_Of the equation ¥'=1+/X) which makes the general squation applicable to
a given specific case. This is done by using experimental results, such as those
given in Table 9, to ealeulate the conslants for the specific type of curve which has
been determined upon. :

Not all. fu!}ctional relations can be subjected to this type of logical analysis,
however, and it is sometimes impossible to tell what sort of equation the results
should really follaw. In that case any mathematical curve “fitted” to the data has
no more special meaning than the graphic curve drawn through the center of the
glrn:ftlj:;’z;:u?; : ‘bo'ﬂ?; are Terely em;ljlirica.l descriptions of the relations, and both are

2 _their interpretation to the range i i
are based, This fact will be discussed mgore? ff!ﬁﬁi lf:;etimotr dste pon which (e
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Tt is apparent from the table that there are great variations in the
distances which different ears or different drivers required to stop,
even when traveling abt the same speed. This is shown even more
clearly when we make a dot chart of the data in just the same way
as illustrated in Figure 3. The graphic comparison between speed

TABLE 10

RELATION RETWEEN SPEED OF AUTOMOBILE anD DISTANGE T0 STOP AFTER SIGNAT,
A8 Smowx By 50 INDIvIDUAL OBSERYATIONH

Speecl. w}.len signal stzfa:;e S?;::fl&i Speed' wlTen signal Dlsme ;;Xflad\
s given before stopping* 15 grven before s‘t'%ppmg
Miles per hour Feel Miles per howr - ...'\ {Fect
4 2 : 19 O 4
7 4 24 93
17 50 14 26
14 36 12 L@ 28
12 20 e 10
11 28 RN 3
20 48 W15 20
15 54. R S 70
17 w0 25 85
13 34 () 20 B4
15 N 19 36
19 AN\G8 .13 ' 26
10 . N o 10 _ 18
LI - 7 22
22 \J = 66 16 40
18 O\ 81 14 ' 60
LGB 16 20 52
P! . 10 2% 120
12 14 24 92
20 56 17 32
23 54 13 84
18 76 1L 17
12 ' o4 13 46
16 2 12 80
18 42 20 32

* Thewe pbscrvations were made before 4-wheel brakey were omunon.
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and distance-to-stop, shown in Figure 4, reveals that there is only a
\general agreement, between the different tests. There is certainly some
relation between the two variables, but it is vague and uncerfain in
cemparison with the relatively sharp and clear-cut relations shown in

Figure 3.
Distance to stop
infeet”
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Fre. 4. Relation of speed of Sutdmobile to distance it takes to stop, as shown by
L\ Iindividual observations.

| &
There is no particular difficulty in understanding why the relation
is not more definite. The data represent o great varicty of different
elements—ears with two-wheel brakes and cars with four-whcel brakes;
cars wi I brikes in adjustment and ears with brakes well worn; cars
nearlyempty and cars heavily loaded; cars with balloon tires and
cait;s ‘Wwith high-pressure tives. In addition, the drivers differ. Some
~are experienced drivers, some inexperienced; some strong and some
Nainable to press the brakes fully down; some with almost instantaneous
reaction to our signal to stop, some with faltering or lagging response;
some bright and wide awake, others tired and unobservant; some calm
and steady, others nervous and erratic. Finally the conditions of the
tests might be different—some on concrete pavement, others on asphalt;

some on up-grades, some downhill,
There are two different ways by which we might go about deciding
exac.tly what these varying observations showed, One way would be
to divide up the data so that the effect of some of the different {actors
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mentioned would be removed from the results, Thus if we separated
the observations into different groups according to the make of car,
and then reported each of these groups according to the model or
the year madc, the relation between speed and distance for any
single group would no longer be affected by differences in braking
equipment go far as engineering design went. Most of the remaining
factors, however, would still be present to affect the results, so that
even within each subdivision the records would still show great
diversity in the relation. Only if we continued the process of sub- ,
division of our sample until we got down to suceessive observations
of a ringle car operated by a single driver at the same place, would(we
be likely to get observations as consistent with each other as those in
the previous physical and chemical iltustrations. Diﬁeren:oes in the
promptness with which the driver responded to the signalpin the pre-
ciseness with which the specd at the momens of giving-the signal wag
observed, and possibly in the force with which the)driver applied his
brakes, all might influence the result, so that exen then the results
might be less consistent—‘the curve be losd\ definitely defined”—
than in & series of laboratory experiment$\where all the important
outside variables could be definitely contolled and so prevented from
affecting the results obtained. N

Shiould the entire mass of obsgr:itﬁ'tions be analyzed as suggested,
that would give a grest numberaf different sets of relations, each one
showing how long it took agivch car to stop when driven by a given
driver, when traveling a different speeds. But this great number of
different eurves might ot be suitable to answer our question. They
might be so different@om curve to curve that it might seem that there
was no real general-felation hetween speed and distance. A_new car,
with four-wheel\brakes, driven by an experienced driver, might stop
in its own léhgth ab the same speed at which an old car, with brakes
nearly wdtn out, and driven by an inexpert driver, might require &
hun'dreji..\feet or more, Obviously neither one of these extremes would
be fypical of the general relation; but what would be typical? Even
the less extreme cases might show great variations among themselv.es,
50 that i would be almost impossible to pick from the great diversity
of curves one or a few that would serve as a basis of judgment for our
problem,. n

A sceond way of going about it would be to iry to determine some
sort of average relation bebween gpeed and distance. In that case we
should admit that there were great differences from the average 1
individual cases, yet should feel that the average would serve as &
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*general indieation of what the relation was, even though we were aware
it would not be true in every, or perhaps even in any, individual_
case. If we knew nothing about a car except the speed at which it
was moving, that average relation, however, would scrve to give ug
the best guess we could make as to how far it would take it {o stop.
Since we should have to make our speed limits the same for all pas-
senger cars, that might give us the best basis of judgment as to how
high it was safe to place it. Of course we should also need to know
something aboud how much more than the average time exceptignal
cars or drivers might require and how far above the average aninlarge
proportion of them fell,'so as to decide how much lecway &oyallow;
but even so, the average relation would be the first interest and the
point of departure in reaching our decision. :5:.
Where the relation between two variables is clgfityand reasonably
sharply defined, as in the experimental case discugsed, it is not difficult
to defermine the average relationship, since thé\pelation for individual
cases and the average relation for all cases areﬁfearly identical. Where
the relation is not so well defined, haowe¥cF, and where many other
relations are involved n addition to tHe particular one which is being
studied, it is by no means so easy, to0 determine exactly what the
true relationship is. A conside;'a'lee body of statistical methods has
therefore been developed to tregt this particular problem. Since this
problem pertaing to the relation between variables, it has become
known sas the problem, 6f co-relation, or “correlation.” Just how
statistical technique quiy-be applied o the solution of the traffic prob-
lem which has just béen présented will be considered in detail in the

next chapter, 5\ ‘
Summary:.¢ A statement of the change in one variable which se-
companies .gpéciﬁed changes in another is known as a statement of
a functiopel relation, A functional relation may be stated either .
graphiﬂ?al y b'y & curve or algebraically by a definite cquation, Al-
t%wugh functior.ial relations may he readily determined from experi-
{nigntal conclusions where all influences except the one being studied
;Iifehsetl;itic?pst?nt, ﬁjmny_ problems cannot be s‘tudied by such methods.
functiona? ;Z?at?c:z o COT‘?‘B!;(It?.On pnelysis may be used to study
8 where experimental methods are not satisfactory.
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CHAPTER 4

DETERMINING THE WAY ONE VARIABLE CHANGES WHEN
ANOTHER CHANGES: (1) BY THE USE OF AVERAGES

I\

) O
The problem stated in the previous chapter was to determind How

many ject automobiles traveling at a given speed require to\stop. It
involves determining the average extent to which one vatighleichanges
when another variable changes. Stated mathematicallyjthe problem is
to find the functional relation between speed and digtance—the prob-
able distance required to stop with any given,jnittal speed. Of the
many dilferent ways of doing this, the simpké’st, and the one which
would suggest itself most naturally, would he to classify the records
into groups, placing all of one gpeed in ong“group, all of ancther speed
in another group, making as many gjl'fpuf)s as there are differcat rates
of specd recorded, and then averaging the different distances for all
the cases in cach group. This would then give an average distance
to stop for each given rate .of(speed in the series of records. Table 1
shows this operation ca ied out,

Where there werg\cnly single observaéions, this fact has been
indicated by placing’the average—the single report—in parentheses.

The &vcr&ges\:in' the last column of Table 11 show quite gpecifically
how the distgnde required to stop tends to inerease with the speed &
machine ,is%’éivcling. The machines which were tested at 12 miles
per houftstopped at an average distance of 21.5 fect, those at 15 miles
Iien..hj)ih' ‘at 33.3 feet on the average, and those at 20 miles per hour at
508 feet. But the increase is nob uniform. The cars at 10 miles
per hour averaged a greater distance than those ‘at either 11 or 12,
and the carg at 19, s shorter distance than those at 13.

If the successive averages from ‘Table 11 are plotted and con-
nected by lines, both the general increasing tendency and the irregular
change from group to group are easily seen. Figure 5 shows this
comparison {see page 49). -

Do these differences between the different group averages have any
real significance? Is there any reason fo think that thig very jagged

Y]
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line is the frue average relation between speed and distance? We
can consider that from two points of view; the logic of the relation
and the statistical basis of the differences. Logically the differences
are quitc nonsensical. If a given machine can stop in 22 feet when
1t is going 11 miles an hour, of course 1t can stop in at least the same
distance when going 10 miles per hour, and probably something less,

TABLE 11

CompuraTion oF AvERAGE DIsTANCE To STOP AFTER BiGNAL, FOR DIFFERENT
S ) IrviTian SrEEDS

N

A\
Speed when sig- | Different distances | Average distzynke\
nalis given | noted for that speed* | for that gpeed

: 7

Miles per hour Feet het

4 2,10 6.0

7 4,22 AN 13.0

8 16 .\*15 (16}

-9 10 (10

10 26,34,18 ()" 26.9

11 L2817 W\ 22.5

12 20, 24, 2814 21.5

i3 - 34, 99,134, 48 35.0

14 36,26, 60, 80 50.5

15 {64, 96, 20 33.3

T 16 :m} 32, 40 36.0

17 &M 50,40, 32 40.7

18, A\ 56, 84, 76, 42 _ 64.5

180 68, 46, 36 §0.0

Neg 48, 56, 64, 52, 32 50.4
N2 66 ©66)
N\ 23 54 54)
Qg 24 93,70, 120, 02 93.75
R\ 251 8 (85)

* Data taken from Tabls 10,

}t certainly would not take 26 feet, as the table shows. Then from
the statistical point of view the groups are entirely too small to show
very definitely how far on the average it takes to stop at any one
speed. Even the largest group, at 20 miles per hour, has only 5 cases,
wherea§ we have seen in Chapter 2 that 10 to 25 cases may be required
as 4 minimum to give an average of much reliability, Computing the
standard error for the average from the 20-mile group of reports, it
comes out 5.3 feet. With only 5 reports, howeyer, Figure A (in Ap-
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pendix 3) chows that we have to take a range of 1.1 times the standard
error to make the ohserved valuc come within that range of the true
value in 2 zamples out of 3. We may say that the standard error of the
average, taking this into account, i 5.83 feet.* The average for this
group of records may therefore be written 50.4 == 5.8 feet. When we
say that the average distance required to stop when traveling 20 miles
per hour (for all automobiles in town, say) is between 44.6 feet and
56.2 fect, we are likely to be wrong in T out of 3 such statements, on
Distange fo stop ’

n Tee

100

80

60

40 — ‘ —

20 /\/ —

- R\
o \

° 5 N0 15 20 25
Speadof aute —in miles per hour .
T, 5. Relation of speed of ,ag’it}mobile to distance it takes to stop, a8 shown by
’\&\(éi'ages of small groups.

the average. Witlthe average from the largest group showing as
littie reliability\:a,s' this, it is quite clear that the zigzag variation
from averagé™fo average has no real meaning. So few cases are
included jﬁa\%ieh group that the averages are not statistically reI}able
to anything like the individual differences. All the irregular differ-
enees from group to group ¢an therefore be accounted for by purely
clinpbe varistions in sampling. Tt is quite possible that they aré fi“e
solely to the small number of cases. Ag they have no statistical
significance there is therefore no need to be worried about them. '
Docs that mean that in spite of the ‘relationship we can §€é in

1The standard error is computed from the gtandard deviation of thle five re-
ports at 20 miles, using equation (7.1). This gives & value of 53. Figure A, rlﬁ
Appendix 8, shows that for five reports & 12nge of 1.1 times the cn_:urnputed stands.
error must be taken to secure a reliability of 67 (or probability of 33 for the
specificd departure}, so the final standard error is (53) (1.1}, or 533.
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Figure 5 that we can get no sccurate statistical measurement of the
relation? That is overstating the case a litéle; all that we have
determined so far is that the line of averages, the irregular function
shown in Figure 5, has but little statistical meaning, just as it stands
7OW.

We might be able to make the results more aceurate by basing
our averages on & larger number of reports. As we have scen previ-
ously, the more eases there are in a group the morc reliable the
average of that group is likely to be. One way of doing that, would
be to go out and get more records, so that we should have,eneugh
eases in each group to make the averages reliable within smiiH' gnough
limits to suit our needs. Bul that would be a long antl/expensive
process, Isn’t there gome way we ean find out something more just
from the records we have? &

" Another way of making the conclusions mors{stable would be by
combining the records so as to give fewer groups) but with morce cases
in each group. So far we have been wo_rkingl\vith 19 different groups,
one for each of the 19 different speeds r{léas red. If instead we group
them into a few groups—say four or five—we shall have considerably
larger groups to work with. - :

Independent and dependent.¥ariables. The question might be
asked whether the groups sheiild be made on the basis of the rate
of speed or of the distance{e stop. (In preparing Table 11 we used
the rate of speed withofit, discussing the matter.) That comes back
to the question of whab we really want to find out. Do we wanb to
know the average(dpeed at which machines were traveling when it
tqok them, say; 20 feet to stop; or do we want to know the average
distance maghines took to stop when they are traveling at a given
speed? kvicusly, the thing we are going to set is the speed limit, and
we are afierely interested in the distances to stop as one factor to guide
us in "eciding what the speed limit should be. We therefore want to

) kgow the effect of speed upon average distance, and not the reverse.
Xor that reason we shall classify our records on the basis of specd,
and t¥1en average together all the different distances for the cars
traveling at that speed.

a’fif;fl ?;T\Eegrl:ii:i)o:;fi :ir;let with in nearly all problems where the

oy 1o thiok aver ihe melt) l_ees is tofblt:i dealt wmt-h_. It is alway’s neces-
are going to regard aspthe irl:;ll Cﬁred‘l_ L oand decide W°hmh variable 'We
one as the dependent ependent or cfausal variable, ‘?"“d wlu'qh

: pendent, or resultant. Thus if we were relating varia-

tions in tobacco yields to applieations of fertilizer, obviously " the

differences in fertilizer would be the cause and the differences in

rel
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yield the result, so we would sort -our records according to the differ-

cnces in fertilizer., Other relations may not be so clear cut. If the

size of stores were being related to profits, it might be as logieal in

some situations to eonsider thab the more successfu}l men were able to

afford the largest stores as to consider that the larger stores returned

the greater profits. Careful considerstion of the facts in each given

case is necessary to clarify exactly what is the particular relation in-

volved. . _ : -

As shown later (pages 113 to 121 and 450 to 451), it is frequently

impossible to say which variable is the cause and which is the effect; .
All that can be definitely established is that the two vary togethe{.

Yet one may wish to regard one variable as the one whose valugs, 5re

pgiven or known. It 1s then called the independeni ‘varighle and

plotted as the abscisea. The gecond variable will then be.fegarded as

the onc whose values are to be related to, or estimated fofd, the values

of the known variable. It is then called the_@_qpendeﬁt:'mriable, gince

it is troated as depending upon the given valugs, of the independent

variable. It is sometimes desirable in particulat problems to consider

first one variable as the independent variable’ and then the other one

as independent. o\
TABLE\i? "

AVERACGE RELATIGN BETWEEN SPiﬁﬁ!j"Oi?' CaR AND DISTANCE TO STOP, A8

Qown BY REgfhps THROWN INTO GROTPS
M

e ————————

Sneed when signal is MNimaber of Average distance,
P i gn p }gports Average speed to stop
AK ' B S

Miles per houny Miles per hour Feet
Under 4.5 /& 2 4.0 6.0
4.5 to N5 4 © 7.8 13.0
9.510.345 17 12.2 32.4
14.5419.5 15 17.1 46.8
#19vF and over 12 2.2 69.3

%45 to 9.5 means 4.5 and up to, but not including, 0.5

Groups of larger size. To return 1o our automebile problem. Since
the speeds varied up to 25 miles per hour, and we have 50 reports to
deal with, we might try breaking them up into 5 groups and see what
kind of averages that will give us. Using groups covering & range of
5 miles per hour each, we can group the records and determine tl}e
averages for the 5 groups thus formed, getting the results shown 1m
Table 12,
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These averages can then be plotted and connected by straight lines,

" just as were the averages in Figure 5. In constructing Figure 6, which
shows this process, it is necessary to use the average speed as well as
the average distance-to-stop in locating each point. This is because
each of the average distances, as shown in Table 12, represents not one
speed, but scveral different speeds thrown together. If we wish to
compare the average distances, it seems most sensible to compare
them on the basis of the average of the speeds which they represent.
The circles in Figure 6 represent the several group averages plotted
this way. The first one is located at the intersection of the{lines
Distance D

to stop S C
n feet -

8G
60 -

4_0 B

26 |~ / % :3 '
o IIIT’["J’\‘{F EENASNEREAENE
0 507 10 i5 20 25

SNM of avte—~in miles per hour
 F1a. 6. Relation of fped of automobile to distance it takes to stop, as shown
:.:\ ) by averages of large groups.
2N\ :
for 4.0 miles’ per hour snd 6.0 fect; the second at 7.8 miles per hour
and 13.8 }eet; and so on for the remainder.,
A¥hen the group averages of Figure 6 are connected by straight
\ii;;?s the r'elatlon b.etween .speed and distance is shown much more
tlsfactonly‘ than it was in Figure 5. The line in the new figure
shows a continuous relation between speed and distance. It indicates
that, when the averages are taken from groups large enough to elimi-
nate .the effe.ct of individual cases, the higher the speed the greater
the distance it takes to stop,
But on close exau}ination even the relation shown in this last figure
ntt):; found fully satisfactory. If we compute the change in distance-
o-stop for each change of 1 mile in speed, we find that the conclusions

ig
t
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are somewhat erratic. DBetween the first two averages, the change in
speed from 4.0 to 7.8 miles per hour, an inereage of 3.8 miles per hour,
i accomnpanied by a change in distance from 6.0 fo 13.0 feet, or an
increase of 7.0 feet. Between 4 and 7.8 miles per hour, therefore,
the distance-to-stop apparently increases 1.8 feet for each increase of 1
mile per hour in the speed of the machine, Similar eomputations for
all the other groups are shown in Table 13, carrying out just the

same Process.
© The results shown in Table 13 reveal that even the averages of

Tisure 6 are not altogether consistent. Between 4 and 8 miles pef ™
TABLE 13 : R

Ny
ConprraTion oF Craxae 18 DisTANCE FOR Eacit CHANGE OF Oxe MiLE 1N SPEED,
: : 7%
For DirreronT GROUPs oF RECCORDS A\ - 3

£

NN
. 4 Increage in
Speed when Average . \ .| distance per
sgalis | Average | gitance to | [RUSRRIR ‘b‘d‘f‘;:f 1 mile
given speed stop i3 Be'%x\ €& | inerease in
PN\ speed
M iles per howr; Miles per hour Feet N \ifsTes perhour|  Feel Feet
Under 5 4.0 6.0 a3y
S } 3.8 7.0 1.8
Sto 10 7.8 \3‘ 0
: O } 4.4 10.4 4.4
10 to 15 12.2 KN 24 |
N\ } 49 14.4 2.9
1510 20 17. 15" 46.8
& } 5.1 2.5 4.4
Wio2s | (2272 69.3
W) -
¢\\

hour theiz indicate that the distance-to-stop increases 1.8 feet for

eagh fierease of 1 mile in the speed of the machine; between 8 and 12
ratley "per hour the distance suddenly starts 'mcreasing' 44 feet for
each 1 mile per hour increase in the speed of the machine; then be-
tween 12 and 17 miles per hour the effect of further increase on ?he
speed becomes less again, averaging only 2.9 feet increase in stopping
distance for cach increase of 1 mile per hour in speed; and then,
finally, between 17 and 22 miles per hour changes again to 4.4 increase
in fect to stop for each 1 mile increase in the speed of the aute.

This same variability in the rate of change can be seen directly
from Tigure 6 by noting the steepness of the several portions of the
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line. Between 4 and 8 miles per hour, where there is the least average
change in distance for each change in speed, the line has the least
slope, that is, is the nearest horizontal. Between 8 and 12 miles,
where the average distance to. sfop ‘is much larger, the line tilts up
abruptly; then between 12-and 17 miles per hour, where the average
change in distance is less rapid, the line is flatter agaiu, tilting up
once more for the more rapid rate of change shown by the last group.
It should be noted, too, that the sldpe of the line is almost exactly the
same between the 7- and 12-mile averages, and the 17- and 22-mi
averages, illustrating the faet that in both these intervals the incréaze
in distanee was the same for each mile-per-hour increase iy &peed,
The irrcgular and zigzag character of the line in Figurc 6 {herefore
shows the same vaeillation in the group averages that Tthé; computa-
tions in Table 13 show. Simply by examining this elart ‘closcly it
would have been possible to tell about this unsafigfavtory character
of the conelusions without faking the time to calmildte out the exact
rates, N

Are the irregularities shown in Tablg; .ﬁa’and Figure 6 of any
significance statistically, or are they dug tsii:'ﬂply to the possibilities
of variation in using so small & sampls,-Just as were the differences
in Figure 5 and Table 11?7 Is it rqaﬁjf true that an increase in speed
has a larger effect upon the distancé required to stop between 7 and
12 miles per hour than betweend2 and 17?

Reliobility of group avergges. The answer to these questions again
involves & consideratio fohe statistical basis upon which our con-
clusions are based. These last results were caleulated from the average
speed and average clis;tance for the several groups of records; obviously
they can be no_pfore reliable than are these averages themselves. In
measuring t}m;:l:aiabﬂity of those averages by the methods we have
already dis@séd, the thing to do is to compute the standard errors
which m}f tell us about how much confidence we can have in each
ﬂgt}}:&.’\'That means that, by calculating these statistical constants,
wé cdn judge at least the range within which the true average may fall,
In two samples out of three, provided the sample is & random sample.

The next step, therefore, is to caleulate the standard error for each
of the five averages of speed and the five averages of distance. The
computation, which is exactly the same as that used before, based on
-equation (7.1}, is shown in Table 14,

Comparing the several averages with their respective adjusted
standa:rd errors, 28 shown in the last column of Table 14, we find that
there is not a great chance that if we madec the same number of ob-
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servations over again and used the same grouping, we should get
averages different enough to change the loeation of the points ma-
terially. But with regard to the distance required to stop, the averages
are much less reliable. I we collected enough records to determine

TABLE 14

COMDPTTATION OF STANDARD FRROHS FOR THE AVERAGES Spown v TasLe 12
Computed | Range within _
b . gtandard whichchanees] Average plis,
Group | Number of Stg.m_la:rd orror are & that | range fur 2
| cases, n deviation, o 7 sverage will | probabiliy t
' ' o fall * N\
J. \/13, i \\
. TN
Tor speed ’ AN
. 8 \
..... - N
Miles per hour Miles per hour| Miles per hour| Miles e hour| Miles per hour
Under 5 2 1 PN > 407
bt 10 4 (.83 0.48 '\ 0.58 7.8 £0.46
10 to 15 17 1.39¢ 0:35’:7 4 0.36 12.2 +=0.4
Wi {15 114 o 0(3 0.40 17.1 £ 0.4
20 and over 12 ©1.95 X w059 0.62 | 22.2=0.6
It});:'.;ﬁstanee
FeelNo stop | Feet to stop | Feet tosiop | Feel lo siop
Under 5 2 ¢ M4.00 400 | 720 6.0+7.2
5 to 10 a5 1N 6T 387 | 468 13.0 1 4.7
10 to 15 17,00 1608 4,02 . 418 [ 82.4x42
15 to 20 A% 17.62 4.71 4,90 46.8 i?i
20and over | /)12 23.25 7.00 7.85 89.3 % 7.
"\$~

* Thess v \es" are obtaived by ndjusting the computed standard ermr'i,o 1nd1calt.e t.‘he;iansz
for which the probability is only 0.33 that the true average liea outsidtg. By mberpolatmg in fog\:d
A, Appendll® 2, the necesary adjustments to be applied to the sompiited standard errors are e
to be ::fb\:?'obﬁervatious. times 1.80; for 4, times 1.21; for 15 or 17, times 1.04: %nd for oo t;l;neata.nd:

“PI4ddition to the ranzes shown here, there s a further margin of uncertainty due"tﬂ ¢ . I311 to
arfgfror of these estimated standard ecrors. 1t ranges from 71 per eent for the amallest gro P ?

18 por veni for the largest.

the several averages quite accurately, there is one chance ouf of three

that we might find that the true distance for the first group Was prae-
tically nothing, or else more than 14 feet; or for the §econd gr;)u[;
was loss than 8 fech or more than 18 fect; and 80 on.untll,for -{-he ast
group it might be under 62 feet or over 77 fect? With this wide plos-
21f the standard errors of the estimated standard errors were 31.35.0. taken mtq
account, the zonss of uncertainty would be even wider, . R :
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sible varation in the true values, it is quite evident that the rcal
facts have not yet been measured accurately enough to justily detailed
computations of the differences in the slope of different portions ol the
line, By changing any one of the averages as much as has been iadi-
cated, the slope of the line would be very materially changed.

Range within which true relation may foll. The extent to which
reliance may be placed in the relationship between the twa variables
as shown by the 50 observations which we have to deal with may be
judged from Figure 7. Here the aciual averages have been plofied,

D1|s+nfr‘|,l:e N
lnofief )

100 N\

N
N
a0 747)
AN
&0 g

e of opparent
i ».'l relation From averages

. XN A
20 LT Frobable Jigurs of
8 N /mg of Ffrue }-e!afmn,
S from edjusted stondard errers
0 Lz
0 5 N1 s 20 25

. .SKéad’ of auto —in mites per hour
Frz. 7. Relation of speed of automobile to distance it takes to stop, as indicated

by the range aroundsgroup averages for which the probability is § that the true
AW average 15 included.

' N
and lmeKhd?awn connecting them, just as before. But, in addition,
re.ctajnglgs\ ave been drawn around each average to indicate the zone
w1t1'{1;; ‘Wwhich. the true value would probably be found to lie if enough
recOrfls were taken, using plus or minus the range for two chances
‘quf of three each way as the distance in laying off the rectangles
from each average® The corners of these rectangles have then becn

3 }.‘&s the rectangles have been laid off with regard 1o both distance and gpoed
only in less than half the szmples would the true values fall within th; recta:}lgie“,
In two out of three such samples the ‘average speed will not differ frc;m the t-ru;
average speed by more than the stated amount, Similarly, in twe out of ‘three
zl;c};;?:?;es ?1]18 oi)tser:ecil average distance will nog differ f;'om the trué averagn

ihan the extent caleulated, Since 2 tirag £ £ r i .
out of nine, on thfa average, would it be liI:ely :;a: 23?}31 zl‘;;eorlxlrlgd{n fe?;(rir:iaﬂgii:
tance would fall within the caleulated ranges from the true values of :1?23 same time.
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connected by lines just as were the averages before. The probabilities
now are that the line showing the true average relationship between
speed and distance would run somewhere between these upper and
lower boundaries, even though it might not be the particular irregular
line of averages we have used so far, |

Tigure 7 indicates that there is really a rather wide zone within
which the true relation might fall, even when we take the zone as
indicated by statements which will be incorrect one time out of three.
For cxample, it indicates that maehines traveling 15 miles per hodh
would probably stop in 36 to 46 feet after the brakes were applied,
whereas those traveling 20 miles an hour would probably stop.in'52 to
6% foet. But this is still a pretty rough measure—would inareasing the
specd from 15 to 20 miles per hour inerease the distance, from 46 to 52
feet, only 6 fect; or would it inerease it from 36 to €8. feet, 32 feet?
Of and by themselves, the data do not tell us. Weédehot yet have any
general statement of the relation between speed, amid distance.

We have secn how increasing the numbetCof cases included ina
single group increased the dependence Whi(ﬁh would be placed in that
group. However, even by reducing our 50 cases to 5 groups we have
not been able to get a consistent'aﬁ&' satisfactory statement of the
relation. Is it possible that by handling all the data as a single group
we could got a better result?"One_way of doing this would be to
average all the speeds and &M the distances together. But that would
only tell us what was the’average distance to stop and the average
speed, What we wa.ust,\to know is what distance is most likely to be
required at any given speed, and the treatment just suggested would
not give us that{ \

There is'ane\“way, though, of determining the relation while con-
sidering glMtHe records together. If we are willing to assume that
an incrggte of one mile per bour in the rate of speed will increase
the digtance required to stop by exactly the same number of feet,
o matter how rapidly or how slowly the machine iz nlready moving,
theh we can determine this relation for ail the data as a whole, On this
basis a straight line can be used to represent the relation. All that we
have 10 do is to determine & straight line which will come as near a3
possible to representing the relation as ghown by all 50 individual
obgervations, .

Summary. The change in one variable with changes 1nt anoﬂ}er
may be approximately determined by grouping the records z.a,ccordmg
to the independent variable and determining the corresponding aver
ages for the dependent variable. Unless a very large number of
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.obgervations .is available, however, the functional relation shown by
the succcssive averages will be irregular and inconsistent, owing
solely to sampling variability. For that reason some method is needed
for measuring the functional relation for the group of records as a
whole, The simplest way in which this ean be done is by assuming
that the relation can be represented by a continuous straighf line
Methods of determining such a hne will be considered in the next
chapter.

Note 1, Chapter 4 As already noted earlier in {his chapter, I Iz always }'Jo\s-
sible to reverse the dependent and the independent variables. Thus- U)P\ﬁah
presented in Figure 3, on page 38, might have been plotted with time a\the inde-
pendent variable and with distance fallen as the dependent. A enrye Soight then
have been drawm in to show the average distance which a body LB{B t{a\ erse fora
given time of fall. Similarly, the data charted in Figure 4, ,on page 44, might
have been charted with distance ag the abscissa and speedy a;s\the ordinate. The
data would then be i shape fo consider the question, WhatNs the average speed
of cars which require a given specified distance to step?” The funciions which
express these relations are not exactly the reciprocalf \f the functions which ex-
press the reverse reiation. That iz, when ~N

 §
’.

Y= f(X)

and X - -sm
31

“(Xj:i‘ﬁ;?

The reasons for this will b%wc:gasidered subsequently,



CHAPTER 5

DETERMINING THE WAY ONE VARIABLE CHANGES WITH
ANOTHER: (2) ACCORDING TO THE STRAIGHT-
LINE FUNCTION

There are s good many ways by which a straight line can be deterd ™
mined to show the functional relation between the two varighles,
speed and distance. One way would be simply to place a ruler overthe
chart along the several group averages, or to stretch a black: thread
over them, and draw the line in by eye so as to fall as néarly as pos-
sible along them. Although no two persons would draw their lines ex-
actly the same, still this method might give fairly satisfactory results
where only a rough measure was wanted. In thepresent case, how-
ever, in view of the expensive field work negp{s’ary to eollect the data,
it would seem worth while to put as mugh clerical time on analyzing
those we have as is needed to give the mo'st'a.ccurate results. We shall
therefore use the exact correlation m:é;thbd of d_etermining the straight
line. T JONT '

The equation of a straight Mine. The determination of what
this line will be consists indinding the constants for the equation of
the line. Just az we a{;fe' aiready seen {Chapter 2) that the curve
showing the relation bheteen the distance a body has to fall and the
time it takes can Ql{é:e}’{pressed by the relation, .

\\ Y = % X
80 any Stljég%ﬁt line ean be expressed by the relation !
\\ V=a-+bX ' {8

4 .\’~ 3
1 Written this way, the equation is & perfectly general one which esn be applied

to tWe relation hetween any two variables, by calling one of them ¥ and the c_)the;
onie X. The symbo) ¥ in the equation simply represents the number of um‘ts Od
the variuble we designate as ¥, whatever that may be, acres, dollars, pounds; aiy

the symhol X likewize represents the number of units of the varisble we designsie
X may he 4

as X. Thus if X is the number of rooms in each of a series of houses, & I

for the fiest house, 7 for the next, 6 for the next, and so on, When we write X we
then mean the number of rooms in cach house, no matter _hcw large ar how amall
that number muy be in any particular case. The particular number which X rep-
resents in any given case iz said to be the value of X. Thus for & house of §
rooms, we should say “the value of Xish”

59
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Figure 8 illustrates the meaning of a and b in this formula.
When the value of X is 0, b times X is zcro, and ¥ is equal to a.
This eonstant, a, therefore, gives the height of the line (in terms of
Y or vertical units} at the point where X is zero, This ig indicated
at the left edge of the chart.

From the same equaftion, every time X increases one unit, ¥
inecreases b times one unit, since ¥ is computed as a plus & times X,
The difference of the height of the line (measured in ¥ units} between
the point where X is 1 and where X is 2, is therefore b units of ¥, ju{t
as indicated on the chart. And this continues to hold true for évery

Value of < \\
Y

]

N
Value of X
F1c. 8. Graph of ﬂ:{é‘fuhction Y=a+bX.

unit change in X, whether(from 1 to 2, or from 0 to 1, or from
99 to 100. &\

The meaning of th}s\e constants in the equation of the straight
line, as equation (833 known, may be illustrated more concretely
by taking some @etual values for the constants g and b, and seeing
how the Iine.g:q\ﬂd look then. If we take 3 for a, and 2 for b, the
equat-lon.\‘ygg then read:

. N Y=3+2X
AN
_Bigure 9 shows the line for which this is the equation. Thus if
X 15 taken as zero, the value of ¥ is found to be

Y=3+(2timesf})=3+(}=3

And 3 is therefore the ¥ value corresponding to the X value, zero,
Similarly if X is taken ag 10,

Y =3 + (2 times 10) = 3 -+ 20 = 23
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And the Y value corresponding to the X value of 10 is therefore 23,
All other values of ¥ which may be computed for values of X within
the range shown in Figure 9 will similarly be found to lie exactly
on the same line.

Figure 9 illustratcs again the meaning of the constants @ and b,
When X iz zcro, the value of ¥

. . . Value of
is three unils above zero, as in- Y
dicated, and for every umit in- . ]
creage in X (say from 5 to 6) the _
value of ¥ goes up 2 units. This e yedrz Z
is exactly the samc thing as shown 20 [— < AN
in Figure 8, except that there no - S N
definite values were assigned to @ 10 |— .
and b, whereas here they have RS
been given exact numcrical values. o Fad. 4O |

To rcpresent the general rela- 0 Tohaid g "0 20
tion between the speed of an auto- gy 9, Galph) of the function ¥ ==
mobile and the distance it takes \ 34+ 2%X.

to stop, therefore, we can use this PN, _ .
same kind of equation, letting X star’md ‘for the speed in miles per
hour and ¥ stand for the distance-tosstop in feet.
Thus when we write the equatign:
¥ = : bX
¥ a-t

+$ )
we shall be using that as shorthand for
Feet tp ’éﬁ)“p = @ + b (gpeed in ailes per hour)

g we must determine the
previous illustration we

I ,
But to gg;e;\ﬁhis equation definite meanin
( tants before the graph

numerical gajues for @ and b, just as in our
had to g&sume numerical values for these cons
had’“a\flf' definite meaning for us.

e “observation equations.” One way of finding what the values
should be is by regarding each one of our origina] cbservations {Table
10} as an algebraic equation itself. Thus the first observation, 2 feeb

to stop at 4 miles per hour, would be written
2=a+b@®
on and the 4 miles in

puthing the 2 fect in place of ¥ in the equati
place of X, .
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Similarly. the next observation, 4 feet to stop at 7 miles per hour,
would be expressed t=atb@

and so on right through to the last obscrvation, 32 feet to stop at
20 miles per hour, which would be written—

32=0-+b020)
Bringing all these different equations together would givg & BCrics
looking like this: 2—ad 4 ~
4 =gt 7'5 . .\:\’
50 = a + 17b O '
80 = a + 14b \

32=a-+200 )

(Thc mlddle equations are omitted here\to gave space.)

Sinee we had 50 original observationg)We should have 50 different
equations, each one confaining the t’v{{) unknown constants ¢ and b.

Now by the rules of simple alg,e‘bm, any two independent equations
contalning fwo unknown constants can be solved gimultaneously to
obtain the numerical valuedMor those constants. Ope way to find
the values of our unkno“gn‘}z and b would be to pick two of the equa-
tions representing ouf\bhservatmns and sclve them simultaneously.
Buppose we take tlze first and the last ones; we shall then have:

N
O b = 2
. o
Q" ¢+ 20b = 32
Soivmg thesc two equations simultaneously, we find the values
~O° a—-— 5}
== 9oz
V .
b=1%

But in getiing these values we have uged only 2 out of the 50
observations. Should we have got the same result if we had used

ancther pair? Buppose we take the second observation and next 1o
the last—

Then . . a‘i’“ Th = 4
‘@ + 14b = 80
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These equations, solved simultaneously, give the values
a=—"1T2
b =108

which are certainly far different from those secured before. Appar-
ently the values secured by this method would depend upon fhe
particutar pair of observations sclected, perhaps varying with each

pair. _ _ '
1f we work out estimated values for ¥ for given values of X bx
these two solutions, we get estimates as follows: O\
According to the first resulf, o . R\
Y =— 55} 1L875X Sl
when X =10, Y = 13.25; when X = 20; 1"’}\32
According to the second result, e NY
- N
Y =—72+108% 2O
when X =10, Y = 36.6; }ic(hén"X = 15, ¥ = 909

If we should then plot the two, talculated points for the first of
these equations, and eonncet 'the’r'n’ by a straight line, we should find
that that line alzo passes thedugh the two dots which represent the two
ohservations {rom whic \h:e values were calculated. Similarly, if
we should plot the twé\eomputed points for the second equation, and
pass & straight line@htough them, that also would pass through the
two dots which, gepresent the values from which it was caleulated.
Clearly, therefore, fitting a line to two observations is merely deter-
mining ﬂl,&'%i'e that passes through them. We could compute as
many different lines as there are different pairs of observations not
13rin§~§!n\'f.-he same line. _

“Witting a straight line to two points, as We have done here, 18
simply equivalent to drawing a line to pass through those t-wia pomnts.
This is evident in Figure 9A. Here the dot chart shown originally as
Figure 4 has been replotted. The dots used in computing the above
equations have been designated by crosses. The two lines computed
have been plotted in. Quite clearly no single line could pass through
all the different points. 1f we computed more lines by this process
of using selocted pairs of points, we should just get a larger variety of
different lines,
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Fitting the line by “least squares.” If we are going fo use a
mathematically determined straight line at all, what we r%eed s one
which represents all 50 observations instead of any_partmula.r pair
of them. No one line can exactly fit all 50 obscrvations, for, as we
have just seen, the line which would agree with the first and the last
would not agree at all with the second and next to the last, What
we shall bave to find is some compromise line which will come as near
as possible to agreeing with all the 50 observation equa‘ti?ns,,even
though it does not exactly agree with any one. Mathematiciang ha\fe
worked out & method of obtaining such a line by the use of ‘what is

"\

Distance to stop in feef N g ™
T T T T &N
&
100 | P
Y= -72¢i0 86X
B0 |-
&0 |-
40
20F O
A\
Ye-5.5 +L 875 F
\12 i i |
M ? 0 5 10 15 20 25
o\ Speed of autemobile in miles per hour
Fra. 9A/"Data for automobile problem, and straight lines fitted to pairs of
) - P
I\ . individual observations,

Ml:m{,f‘;;,n' a8 the “meéthod of least squares.” Although the process of

\dbﬁermining the values of the constants ¢ and b by this method s
somewhat complicated, it takes all the observations into account, and
gives each one of them an equal weight in the process. It is therefore
of very great value in handling problems of this sort.

The equations upon which the process is based are derived by
the use of caleulus, and their derivation is given in Note 2, Appendix 2.
The method itself, however, is very simple and ean be used by anyoné
having & knowledge of simple algebra.

Computing the exfensions. The individual observations are firsb
listed as shown in Table 15, The speed in miles per hour is placed
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TABLE 15

CoMPUTATION OF VaALUES FOR DHTERMINATION OF LINE_BT LEeast BqgUARES

Bpeed in miles Distance to stop . -
per hour, X in feet, ¥ X XY
4 2 16 8
7 4 49 28
17 50 289 850
14 36 196 504
12 20 144 240
11 28 121 308
20 48 400 960 O
15 54 225 810
17 40 280 680, { N
13 34 169 AN
15 26 %ﬁ? 390/
19 63 A
10 26 100 122%
13 56 324 { & 1008
22 66 484 N 1452
18 84 szi ¢ 1%3
8 16 6 \
4 10 16 xj\\“ 40
12 i4 144 168
20 56 00 1120
23 54 {320 1242
18 76 o\ o324 1368
12 24 O 144 288
16 33 3 256 512
18 42 324 756
19 ®w " 361 874
24 93 A 576 2232
14 26 196 364
12 28\ 144 336
9 \%o 81 90
10 A\ a4 100 340
13 >~ 20 225 300
94 N 576 1680
25 / ) 4 85 525 2125
20 m 64 400 1280
19 \*“; 36 361 634
13 Q 26 169 338
103 18 100 180
PR 22 49 {15453
2\ 16 40 256
\J i 60 196 840
20 52 4()0‘ 1040
24 120 576 2880
24 92 576 2208
7 32 289 TS
13 34 169 2
11 17 . 121 18
13 1% 169 508
i1 80 196 lgg
20 32 400 .
Tot.a_]s, 770 =X 2’149 =37 ]_3’228 = Z(X”) 38,4;82 = E(XY)
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under the heading “X,” and the distance-to-stop in feet is placed
under the heading “¥.” -Then each X item is squared, and entered
in the eolumn headed “X%”; and each X item iz multiplied by the
accompanying ¥ item, and entered in the column headed “XV.”
Then all the items in each column are summed, giving the totals at
the foot of each eolumn. Just ag before, in eomputing the standard
deviation, we shall use the symbols “2X” to reprcsent the sum of all
the X items; “ZY” to represent the sum of all the Y items;
“2(X*)” to represent the sum of all the X2 items; and similaly,
we shall use “Z(XY)” to represent the sum of all the products in
the XY column. &)
Solving the equations. Having obtained these values 4a)indicated
in Table 15, we can next proceed to find the values gfid and & by

the aid of the following formulas: X

_ 2(XY) — nM My
C 2 - n(ﬂ@%\'
o= M, — My (10)

(9)

In using these formulas the xgqlu;::" of b is determined first, then
1t i3 used in the next formula to determine the value of .2

33X 770
Mﬂym% = — = 154
\\ n 50
) Y 2149
£ M = = —— =
QT My = T = = 428

N

2]t sh_m@e'zn\z‘ nofed that if both X and ¥ had been stated in terms of deviation
from theiyteean values (just as was done when the standard deviation, ¢, was com-
puted inTable 6), they would have been denoted by the symhols small z and small
. listhe product shown in the fourth column of Table 15 had then been chtained
g’ir:‘yultipl_ying together these two values, it would have becn designated xy, and
lissum, E(zy). The correction factors used in the first part of the formula (9)
Just, given are used simply to change the produet sum of the originat observations,

(XY, to “:hat it would have been if it had been computed from the deviations
of the mean instead. That is to 82y, : '

- ZEXY) — nM.M, = Sy (1)
Similarly, (X% — n(M,)? = 22
Hence b= Ela) /2

 Equations (9) and (10) are only another way of stating the “normal equations,”



\ The method by which this line iz fitted rests up

FITTING THE LINE BY “LEAST 8QUARES" a7

Using the values for XX, TY, Z(X?) .
o . : and 2XY :
15, in equations 9 and 10, we find the values of b and @ fg,(l)v}f: - Table -

3 }z) — MM, _ 38,182 — 50(15.4) (42.98) 53874
2(X%) — n(Mp? | 13,228 — 50(15:4)(15.4) T 1,370
@ = M, — bM, — 42,88 — (3.63)(15.4) = — 17.54

The equation for the straight b i
: ght line, as thus det
observations, ie therefore " cemined by a1l (e

=3.93

. ™\
Y =—17.54 + 393X .
<\A

(For an exercise, plot this line in on the dot chart shown iry Figure 4,
on page 44.} R hy )
. This line is called the line of best fit, gince it is 'tlzle.‘line which
gives, for all the 50 observed values of X; values'{z"i'”l’ which come
as 11_0&1‘ as possible fo agreeing with all the differeht ¥ values observed.
While some cquations, guch as the two compgtbcf from 2 observations
each, would come closer than would this ape for some individual cases,
igeg \“’v’ﬂ}lld bt:s much farther off for Dﬁhél:“ﬁé.ses; this one comes closer
grecing with all the cases than _aby other gtraight line?

Estimating Y from X. We.fan see just how the equation for
e for X we wish and v{ropking
we can take

-

this line works by taking any glﬁ’ﬁﬂ valu
out what the estimated va{u"e for ¥ would be. That Is,

. $ iw 3 :
which can be solved simulﬁkheaus!y' to give th

are _
A« e+ X0 =27
'\.. (ZX)a + Xy = XY

N\ ) ) _ )

; El}ese t-: N equations can be solved gimultaneously to geb the values for @ and
;} w. m}l _":f-‘ll est fit all the cguations, in the same way that {he previous paired
sservaliong were put jnte gimultancons equations and solved simulianeously to

geb the values whieh would exactly fit the two ohservations.
' o the assumption that the

around the fitted line will gpproximate 8
cdingly erratic as com-
nd the line will

values for e and b These gquations

zeatter of the individual obscrvatioDs.
§rnzial digtribution. If one or two observations are cxce
pared to the others, so that the seatter of the observations arou

be very skew, this method of fitting may be uns=atisfactory.

o S_The way in which this equation gives the best fit may be explained mathe-
atically, If the ditfercnces between each of the actual observations and the
d, and summmed,

:EZ;nated values given by this equalion &€ computed, SqUATC
Sinc sn will be smaller than _it would be if any other st.ralght Jine were usgd.
nce this method determines {he line with the smallest possible squared devias
I'mn,s' t?m line is known as the “legst-squares” line and the method of com:
puting it is known as the “method of least squares.” .
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any initial speed we wish and compute from the equation what would
be the most probable distance required to stop, on the basis of the
straight-line relationship.

If 14 miles per hour is taken, X will be 14. Substituting this
value in the equation gives the estimated value of V.

Y =—17.54 4+ 3.93 (14)
=—17.54 4 55.02
= 3748

So the number of feet which would probably be reqt;i(eﬂ*.\ﬁo stop,
when traveling at 14 miles per hour, would be about 37.5vect. Com-
paring this with the original observations, we see ¢hat the 4 cars
recorded at this speed stopped in 36, 26, 60, and 80 dect, respectively.
At 23 miles per hour the single car observed Mobk 54 fect to stop,
What estimate will the equation give for ‘r{mt speed? Let us see:

Y = — 17.54 + 3.93.@%)
= 17.54 +@0.39
= 72860

This is much higher thanvthe single observation. But referring

to Figure 4 we see that that observation fell far below the general

" trend of the other obsefvations. The straight-line equation, based
on all the observatit@ﬁhua seems to give a more reliable estimate
of the distance which' is most likely to be required to stop at any
given speed thansdoes any one individual ohservation.

But how fa'is'it true that the straight line gives the most accurate
estimate? Wl it hold true for speed of 1 mile per hour or for
a speed x\{f;50? Let us see.

Fan3 mile per hour the equation becomes:
4 ¢\' ¢ -

Q!

\m{ Y =~ 1754 4 3.93 (1)
= 17.54 -+ 3.03
=—13.61

For 50 miles per hour it gives:
Y =—1754 -+ 3.93 (50)
=— 1754 4 196.5
= 17896
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Of these two results, only the latter sounds at all sensible. To
say that a machine moving 1 mile per hour stops in minus 13.61 feet
is saying that it stopped 13.61 feet back of where the brakes were
applied, which is certainly nonsense. On the other hand, to say that
& machine traveling 50 miles per hour would stop in about 179 feet
after the brakes were applied might be quite reasonable—if we had
any-direct evidence for machines traveling at that speed. But that we
do not have., All that we have arc chservations on 50 machines travel-
ing at rates varying from 4 to 25 miles per hour. Bince we have no
observations - for specds below 4 miles per hour, we ¢annot expett,
our equation to be of any reliability below that point; and, singe we
have no observations of speeds above 25 miles per hour, wel capnot
be sure that our equation will give good estimates beyond, thet point.

Only within the range covered by the original obsergiations can an

7

estimating equation of this iype be used. RS

Of the 50 obscrvations, there were 6 below 10\miles per hour and
only one above 24, 50°43 out of the 50 were betyeen 10 and 24 miles
per hour, Tor that reason no great reliancegan be put in the equation
below 10 miles per hour and ahove 24,nf}i.les per hour. Only within
those limite where the bulk ef the ol:gsérvatiuns fell can the equation
really be trusted* For that reagdtthe final equation, showing the
average relation between speeds }ih’d distance for automobiles, should
be written: ~

&
Y = — 17.54 + 2\9\3~~CX), for values of X between 10 and 24

Then the application’ of the equation is limited to the range given,
and there is pd danger of its being used to give absurd values for
speeds too lewior untested values for speeds too high.

Now \thé.t’- ‘the limits of the line have been considered, it may b.e
well torddrapare it to the group averages used before, to see ?10W this
singleyline, based on all the obscrvations, compares with the irregular
ling obtained swhen the observations were grouped. This ean be done
conveniently by drawing in the line on Figure 7 Whi_Ch showed not
only the line of averages but also the limits within Whlc}-! th(?se aver-
ages were probably correct. This comparison ig shown in Figure 10.
The straight line determined by the least-squares solution has been

i the t W]I C]l 2 f(}lﬂlula
5] Of pl‘oblem m 1
E 113 to 121 fOI' a dlSCuﬁSlﬂn a ¥ .

may be used to make estimates beyond the range cover o
Chapter 18 for formulas for estimating the standard errors for g and o
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drawn in solidly for the range of speed in which most of the observa-
tions fell and has been dotted in for the remainder ¢f the range.?
Comparing the straight line with the group averages and the error
limits within which they probably would fall, we see that the line
does fall within those limits in every caze but one, and in that case
it just barcly misses it. That shows that, so far as indicated by the
number of obscrvations we have on which fo base the rcsults, the

istance
0 5to
A feet '
100 _ T >
2\N
80 = —1 O
/H/ N
60 . // m'\ L/
z \/
40—, L /L-j
Zmeacz'img“ IoLpl L east-Egusre fne
; Yesifsivans X
20 p—r’ O
LA -
Lo )
0 +—< '
0 5 0%y, 15 20 23

Speed of guﬁn’-?n miles per hour

T, 10. Relation of speed of {{utomobile to distance-to-stop as indicatod by
ranges around gr({(‘ay‘erages and by least-squares siraight line,

straight linc may gérye as a more reliable indieation of the general
rélation than dogs $he irregular line of the group averages.

. The est-im"%@d'distance required to stop, for each speed considered,
is shown by the corresponding ordinate of the line in Figure 10. ‘The
!astimatpc§ Values may also be obtained by substituting the X value
in th:e\w‘aq’ﬂat_ion, just as has been done for the observations at 14 miles
a{in”:ts}at 23 miles. Carrying out this computation gives the estimated
valGes shown in Table 16. Stbtracting the estimated distances from
the actual distances gives the residuals, or the difference between the

§This line iz drawn in according to the equation by determining the ¥ values
for any two (:.onvenjent values of X, and then drawing a straight line connecting
them. Thus if the values at the end of the bulk of the observations, 10 and 24, are
taken fpr X, the accompanying values for ¥ aro found to be 21.8 and 768, These
}7 values are then plotted opposite 16 and 24 for X ; a straight line drawn connecl-
ing them; and extended as a dotted line to cover the rest of the range,
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two values. The symbol 2 is used in the table to designate these differ-
enees. The average of these differences, taken without regard to sign,
is 11.6 feet; their standard deviation is 15.07 feet.®

TABLE 16

SpEED oF ATTo, DISTANCE TO S10P, AND DsraNcE ESTIMATED FROM SPEED
BY LiNEAR Equarion

Miles | Actua! |Estimated] Residual | Miles Actual |Estimated] Residual
per hour, | distunce,| distance, (Y —Y"), || per hour, |distance,{ distan e, (Y—-Y’},'\
X Y 1 2 X Y ¥ p

| L A5
4 a | —1.8 3.8 19 46 57.1 111
7 4 | 10.0 —6.0 24 93 76,8\ {7 16.2
17 50 49.3 0.7 14 26 A5 3| —11.5
11 36 37.5 ~1.§ 12 28 | W6 T 1.6
12 20 29.6 —9.6 9 10 N]) v37.8 ~7.8
11 28 25.7 2.3 10 34 21.8 12.2
20 48 61.1 —13.1 15 720/ 41.4 | —21.4
15 54 41.4 12.6 2¢ [ 470 76.8 —6.8 .
17 40 49.3 -9.3 25> 1 8 | 8.7 4.3
13 3 83.6 0.4l 220 64 1.1 2.9
15 26 41.4 —15.4 N 19 36 57.1 —21.1
19 6% 57.1 eyl 13 26 33.6 —1.6
10 26 21.8 42 10 18 21.8 -3.8
18 56 53.2 | {\28 7 22 10.0 12.0
22 66 68.9 ,4 )29 16 40- 45.3 —~5.3
18 84 53. 80 s0.8 | o 60 37.5 22.5
8 16 A7 2.1 20 52 61.1 -9,1
4 16,4518 11.8 24 120 76.8 43.2
12 Dl 206 | —156 | 2 o2 | 76.8 15.2
20 56 61.1 —51 | 17 32 493 | —17.3
23 [ 72.9 -18.9 13 34 33.6 0.4
18 P 76 53.2 22.8 11 17 25.7 -8.7
LAEY T 24 29.6 ~5.6 13 46 33.6 12.4
5 32 45.3 | —13.3 14 80 37.5 42.5
18 42 53.2 —11.2 20 32 61.1 | —29.1

Interpreting the linear equation. Just what does the line of least
squares tell us, now that we have decided it is o fairly accurate indica-

tor of stopping distances—at least within the range 10 to 24 miles?

We can answer that by trying to explain what the constants ¢ and b

¢ The significance of this standard deviation of the residuale is explained on

bages 129 gnd 404,
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of the equation mean—the values —17.54 and 3.93, which we de-
termined by least squares.

The first of these censtants, a, is merely an empirieal value to
place the height of the line. If observations available and the type
of equation used were such that they could be expected to give a
sensible value for the distance to stop when X was zero—that is,
when the machine was not moving—then e would give that value,
since when X = 0, ¥ =~ a. But, of course, when a machine iz not
moaving, it does not take it any distance to stop, so in this cage\the
@ has no sensible interpretation at that poini. But that ds.lo be
expected—as has been seen, the line as a whole has but little eaning
below 10 miles per hour, and none at all below 4 mileg which wus
the lowest speed covered by the records, The constént: g, therefore,
has no meaning of and by itself in this particular egdmple, but merely
serves to place the height of the line as a wholafor that range within
which the line does have some meaning. RN

The constant b, on the other hand, is 'lwﬁg;s significant. It shows
the difference in ¥ for every differedde)of one unit in X, on the
average of all the observations, and‘within the range covered. In
this particular problem, the valuc ©£'8.93 for b indicates that between
4 and 24 miles per hour each inerédse of one unit in X, that is to say,
each increase of one mile per-higur in speed, causes on the average an
increase of 3.93 units in ¥ that is, of 3.93 feet in the distance re-
quired to stop. This Jhterpretation of b can always be made, and
is one of the most siguificant results secured by determining the con-
stants for the straight line. In comparison with the values shown in
Table 13, rangingfrom 1.8 feet to 4.4 fect increase in stopping distance
for each ong mile increase in speed, this figure of 3.93 feet per mile
increase \i_Bpeed is seen as a sort of weighted average, averaging
together all the different possible sorts of comparisons like those in
Taibl\xé 3.7

{ \*The value determined for b, like the value previously determined for the
Maéan vield of corn, is not the true value for all the cars in the city studicd, but
i8 only the estimate of that value as determined from the cars ineluded in the
sample. Just as the sample mean may vary from the true mean for the univemss,
so theA b computed from the sample may vary from the true & for the universe.
Likewise, the possible extent of that variation may be indicated by estimating its
standard error, The incresse in distance-to-stap for each additional mile in speed
should bhe stated ss N :

3.93 fect = (standard error of b

Pagegt 312 to 315 show how to calculate the standard error of b and explain its
meanmg more fully,
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It should be noted that even though the straight line does fall
within the standard error limits of most of the averages, as it does
in this casc, that by itself is no proof that the straight-lme formula
really cxpresses the true underlying relation between the speed of a
machine and the distance that it takes it to stop in this example.
Tt is a purely arbitrary method of deseribing relstion, which ap-
parently expresses the observed relation fairly well; but that is all.
Tt is, after all, only an empirical expression of the relationship; and
because it happens to agree fairly well is no proof that it expresses
the true nature of the relation. In fact, there is as yet no proof thab
it is even the best empirical description of the observed relation{ that
can be obtained; further tests, to be described n the next (chapter,
are necessary.

But whether or not the straight line is the best \ftii}ction in this
particular example, it is a type of relation of very(great importance
and usclulness, It is one of the simplest functiens'to fit and to ex-
plain, and for that reason it is very widely use'gls “The equations used
in determining the constants of the equatipq’l\squations [9] and [10],
page 66) are therefore of great importande) The student of analytical
ghatistics should become thoroughly Familiar with the methods of de-
termining the constants of the egu?a'tion and should understand thor-
oughly both the meaning and_the limitations of this type of analysis.

Determining the constar@ Yor the linear equation for & given set
of observations is ealled #¢fitting’ the equation to the data.” Because
the linear equation ig ‘oﬁ\of the simplest of all equations to “fit,” it is
widely and frequentiy-tised. In many cases, no other possible relation
is even consideréd~ Actually, however, the linear equation is very
limifted in it.s.lggfcal meaning. By its very nature, it can represent
only a sit@i-i’o’n where the change in the dependent variable, for a
unit Chai):ge in the independent variable, would be expected to be
just_the same regardless of how large or how small the independent
vagighle was. This is a very precise and narrow relation. In many
sets of relationship, the relation which theoretically would b(? ex~
pected would be a changing relationship as the value of th.e md‘e-
pendent variable changed, instead of thiz unchanging TEIatlﬂ-DShlp-
Unless there is a good logical reason to expect the linear equation to
reprosent truly the situation present, fitting a straight line can be re-
garded only as an empirical exercise, with no meaning to the constff.nts
olbtained beyond the purely formal one of specifying the straight
line that most nearly represents the data.
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Summary. ~To express a functional relaticnship by a straight
ling, the constants may be determined arithmetically by the “method
of least squares.” Such a line gives the “line of best fit” under the
assumptions of that method: a normal distribution of the observa-
tiong around the line and the reduction of the squared residuals to a
minimum. Estimates of the dependent variable may be made accord-
ing to the linear funetion for any value of the independent variable.
Only within the range which includes the bulk of the independent

values does this estimate have meaning, however; and only.fhen if
the straight line gives a satisfactory expression of the obeer\ed rela-
~ tion, either empirically or logically. 7N\

Note 1, Chapter 5. Just as a straight line can be fitted go~show the average
distance-to-stop for each given rate of speed, so another st;axght line can he fitted
if the variables are reversed. In that case the apeed, m\les per hour, could be
regarded as the dependent or ¥ varisble, and the dlutante-to—stop, fect, would he
regarded as the independent or X varisble. Worling out the values of ¢ and &
for this reverse statement of the problem will b&/left as an exercise for the stu-
dent. In line with tho note to Chapter 4, if W)H e found that the value of this

new b is not equal to -5 as previously dett;rm;ned, but will differ slightly from il



CHAPTER 6

DETERMINING THE WAY ONE VARIABLE CHANGES WHEN
ANOTHER CHANGES: (3) FOR CURVILINEAR FUNCTIONS \

A straight-line equation is froquently s fairly good cmpirical hate-
ment of the relation hetween two variables even when the tii'ﬁé rela-
tion is more complex than the straight line can portray..Yet it may
be just as important to know the exact or appro:iimate~}1athre of the
relationship as it is to have an empirieal statemep’s}eﬁ it. For that
reason it iz necessary to consider other ways of $xplessing a relation-
ship than the straight line. N '

Tn the automobile-stopping case we have been using as example,
Figurcs 4 and 10 showed that the stuaight line agreed fairly well
with the averages from the observatidns. Closer examination of the
figures, however, reveals that for_speéds below 10 miles per hour the
actual stopping distance was useally greater than is indicated by the
line; for speeds 10 to aboufr{"IT’-’miles per hour the average s_{;opp.ing
distance was about the sanie as indicated by the line; above 20 miles
per hour the stopping {distance was frequently much greater tl'fan
i¢ indicated by thecbtraight line. These considerations rob the line
of much of its ydefulness for the purpose for which the study' was
started—to ser’s{&as s basis for establishing speed limits. The linear
relation befweer speed and stopping distance is apparently not acchate
above 20 files per hour, tending to underestimate the dist-m?ce‘requll_‘Ed
at highes speeds.  Sinee that might be the very range within which
it shg)desived to set the speed, the conclusions most needed for that
Pacticular purpose would be lacking. .

The real difficulty involved is in the assumption that the -st;alg}{t-
line function applies. We have assumed that an increase of one mile
in the speed of the car increases the distance required to stop by
the same number of feet, no matter how fast the car is already tra_ve!-
ing. When we examine Figures 5 and 10 closely, we see that this is
not eorrect; the line of averages slants up slowly at first; then tends
to rise more steeply as the speed is inereased, urtil it has the steepest
slope at the highest speed. It is therefore incorrect to assume that
) 75
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we can express the relation by determining the average increase in
stopping distance for an increase of one nilc in the rate of speed;
for the increase in stopping distance is not the same regardless of
the rate of speed, but tends to become greater as the rate of speed
ncreases, Only if our expression of the relation can cxpress that fact
too will it sum up all our observations with sufficient accuracy.

What is needed is some general way of stating the relation between
speed and distance, similar to the general rclstion expressed in the
straight-line formula, yet expressing o changing relationship ingtead
of the uniform linear relation shown by the straight line,

Different types of equations. In the same way that dbds pos-
sible to represent relations mathematically by a stralght Jine, it is
possible to represent them by curves of various types. “We have seen
kow the equation ¥ = ¢ + bX can be used to reppégnt any straight
line by determining the proper values to be asmgn$ {0 the constants
¢ and b. There iz practically no limit to the different kinds of curves
which ean be similarly deseribed by matligmatical equations. The
“equations of 4 number of eurves which e ﬁﬁeful in statistical analysig
of the relations between variables are:x Y

Y =a.—3;—bX + cX? (@)
log ¥ 2% + bX @)
g ¥ =a+blog X (0)
o ST Y =at+blgX @
w\.) 1
N\ Y =

AO a+bX “
] \\”\ Y = a + bX + cX? + dX3 (9

) 1
o\ . Y=a~l—bX+c(E) (9)

N\ "Each of these equations can be used to represént a certain type
of curve. Thus type {[a) is the equation of a parabola. If we take
certain values for the unknown constants a, b, and ¢, substitute them
in the formula, work out the values of ¥ for various values of X, and
piot them the same ag we did before, we will see the sort of curve

this equation can be used to express. Thus if we take 1 for a, 0.5
for &, and — 0.1 for ¢, the equation will read:

Y =14 05X — 01X2
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When the value of X is 0, Y will be 1, obviously. When Xis 1, ¥

will be _
Y=1+4+05(1)—01 (1%

=14
When X is 2, ¥ will be
Y =1+05(2) — 012
=14+1- 0..4: A
=148 .
_ A\
Similarly, when X is 3 O
Y =1405(3) — 0.1(3%
=1-15—09 Y
=16 N
For X equal to 4 E N
¥ = 1405 (4) —5DH)
=14 A

<N

and for X =5 N
Y =1+05()—01 6%

o) |
=1+ 05 (6) — 0.4 (6)
" =04

and for X = 6

A\

L >

Plottin ;e‘;,é}l of these values on cross-section paper and drawing
a smoothzeurve through the several polnts, we get the result shown in
Figure 31 in the center of the top section. Examination of the figures
ahfwt"?,\,:'afnd of this chart discloses one characteristic of this type of
chrye—the curve is always symmetrical on both sides of the highest
point—the point where it stops going up and sterts to turn down
(as half way between X = 2 and X = 38 in this case). The value
of ¥ when X = 2 is the same as when X = 3. When X =1 it is the
same as when X = 4 and, for X =5, ¥ is the same 88 when X = 0.
As a result the curve could be cut into halves at the point of turl?lng
downward, one of which would be the reverse of the other. 'Be.sldes
this characteristic symmetry, this curve has another pec}lllanty-—-
it has one, and only onc, change from moving upward te moving down-
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ward, no matter what values are assigned to a, b, and ¢, or how far
it is carried out. For the equation shown, the curve reaches its highest
point when X = 2.5. As shown in Figure 11, the curve continues
downward on both sides of this point, no matter how large the positive
or negative values of X become. Thus if X = 100,

Y =1+ 0.5 (100) — 0.1 (100

= 1-- 50 — 1000
= — 049 ~
X =-100 Y =14 05(—100) ~ 0.1 (—100%
=1 =50 — 1000 O
=— 1049 N

If the value of b were negative and of ¢ were positive, the curve
would then be. coneave from above instead of\ednvex and would be
symmetrical with respeet to its lowest poin’o} /

Because of the characteristics mentiongd; this type of curve is not
very satisfactory to represent many ¥pes of relations. It does have
greab flexibility, in that many differéntly shaped eurves can be repre-
sented by some particular segment 0f the parabola; but on the other
hand the parabolic shape itself\is' so simple that many times the real
relation hetween the variahles' cannot be represented by & parabela.

The characteristics of\# number of other types of simple curves
are also illustrated ~'r£\‘ngure 11. In each case an equation of the
type indicated has‘l;n assurmed, and the valies of V corresponding
to values of X .\hé,ve been eomputed as has just been done for the
simple parabdla.” Then plotting these computed values gives the
curves shqml}. Thus type (f), the cubie parabela, is seen to have one
maximli.rh\pnint. and one minimum point and ene point of inflection
(the paint where the curve changes from concave from above to con-
},’?’.’53\151' vice versa). No matter what values are assigned the eonstants -
in)this equation, it can have only the single inflection and the two
points of maxima and minims. Of eourse the particular data to be
represented might fall anywhere along the entire course of the curve
—if only a single change from positive to negative slope were required,
the point of inflection in the cubic parabols might lie beyond the
extremes of the data, and so not show at all when the fitted curve
was plotted for the range covered by the data.

Figure 11 also illustrates curves of types {b) to (e), as well as
some others not given special type designations. In each ease where
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the log of ¥ is used in place of Y, it is evident that the previous
curve has been modified as if by compressing the ordinates nearest
gero and stretehing out the ordinates farthest away from zero, stretch-
ing them more and more as they depart more and more from zero.
This process transforms the straight lines of ¥ =a + bX to a curve
concave from above when log ¥ = a + bX is used instead; or, when log

Vepubp TecX*

>< /‘\ %moz;;zidz-’

" o )’-aféf-' e Xt

log YearbX

Yrod /gX

/

Jog Veasd (log X)+c(rog

/\ o9 ﬁﬂé{z’oﬁ':{@&?"ﬂ?’j

\h: 11, Curves illustrating s number of different types of mathematical functions.

Y =g+ bX + cX? is substituted for ¥ = a + bX + cX?, it lengthens
out the top of the bend if b is positive, or flattens out the bottom of the
dip if b is negative. Similar results are found with the cubic parabola.

Similarly, when log X is used in place of X, the previous eurves
are modified as if the abseissag were compressed near Zero, and
stretched out in the higher values. This changes the straight lime
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of V=a+ bX to a curve for ¥ = a + b log X, eonvex from above
when b is posibive and coneave from above when b i3 negative. The
parabolag are similarly transformed, making the slopes different on .
each side of the bend in the simple parabola or on each side of the
inflection in the cubie. The effect is to move the “hump” or “dip”
in neater to the zcro abscissa and to stretch out the remainder of
the curve (including the second bend, in the case of the cuble
parabola).

When logarithms are used for both X and ¥, the effect is to mod;@
hoth sets of coordinates in the manmer previously deseribed. <The
curve log ¥ = a'+ b (log X) may have either a concave or &otvex
bend if b is positive, but is always concave from above if b ighegative.
Similar modifications arc noted in the case of the simple parabola.

In any event it should be noted that the curves whose equations
contain logarithms retain some of the same characfjei'istics as those
with similar cquations without logarithms. Thuys“¥the linear equa-
tions (with only @ and b) never change from,a positive to a negative
slope; the simple parabola always has one stcK change, if carried out
far enough; and the cubie parabola al;\vé,y% has two such changes.
In addition, it should be noted that aykariable can be stated in terms
of logarithras only if it has no neghtive values. Whereas the other
functions ean express negative Wﬁilég as readily as positive ones, the
logarithmie curves always bemme asymptotic as they approach zero—
that. 13, they tend to flatten. fm’o and to run almost parallel with the axis.
This is because a Iogar\l\m cannot be obtained for a negative number,
No matter how small a’logarithm becomes, the corresponding anti-
logarithm Is till poaltn«e, even If only & very small decimal fraction.

The hyperhola)(type [¢]) shown just below the center of Figure
11 also is ;g\efuhar in that it can become asymptotic as it approaches
hoth the ¥is and the Y axis, even if one or both of the variables
are in negatnc values.* However, the values of X and ¥ which it ap-

1f-"I'hm‘e are three types of simple hyperbolas which are frequently useful in
curwé fitting:

1. . )
Taqbx equilateral byperbols, asymptotic to o line parallel to the X axis;

1y, .
Y=a+b (}) is an equilateral hyperbola asymptotic to a line parallel to the
Y axis; '
1 1y, . '
y= + b 5 ) s an equilateral hyperbola asymptotic to lines parallel to both
axes, E . . S -
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proaches are not the zero values, ag with the logarithmic ecurves, but
special values which vary in each parficular case and depend upon
the value of the constants ¢ and b in the equation. Still more complex
curves of the same hyperbolic type may be obtained by including
higher powers of X, such as

1
) G S
¢ + bX 4 cX?

Still other curves may be represented by hybrid equations, which,
combine two or more of the simple types deseribed thus far. Thnis
type {(g) is a compound of a simple linear equation and a{simple
hyperbola, This is sometimes useful to represent curves whieﬁ eannot
he represented by the simpler types. The choice of an“eguation to
vepresent & particular set of data, however, depends rupen logieal .
analysis as well as upon the empirical ability of ¥ given equation to
represent the relation found. This matter is d%qussed at length sub-
sequently on pages 113 to 125. 4D

The equations discussed to this point all\have one characteristic in
common. They can all be fitted to the data by relatively elementary
arithmotic operations, as will be sho;&:fg’suhsequently. There are many
other types of more complicated equations which cannot be fitted so
readily. These can reproduce eutves with recurrent or periodic oseilla-
tiong, growth curves, and other complicated biological or physical
phenomena. Discussion;of\the use and fitting of such complicated
curves lies outside tlietgeope of this book?

The inability of @y one equation to represent many simple curves
may be illustrateddy taking a different example from the automobile-
stopping case #ehave been considering previously. Table 17 shows &
series of observations of two variables—the protein content of dif-
ferent safaples of wheat, as determined by chemical analysis, and the
pI‘OpO(Ei,-Effn of “hard, dark, vitrcous kernels” in each sample, as de-
tefrained by visual examination with the naked eye. The relation here
isefuite different from the one we have been considering so far. There
is no causal connection between these Two variables in the sense of
one’s heing caused by the other. Instead, they are merely two differ-
ent ways of measuring the character of the wheat. It is a short,
rapid process, however, to examine the samples by eye and determine

2TFor examples of such complicated curves snd methods of 'ﬁtti_ng_ them, see
Frederick F,. Croxton and Dudley J. Cowden, Applied General Statwstics, pp- 540~
571, 441-462, New York, Henry Holt and Co., 1940,
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the percentage of hard, dark, vitreous kernels, whereas it is a long and
expengive process to run a chemieal test on each lot. For that reason
it ig of importance to know whether it is possible to estimate the
protein content from the percentage of vitreous kernels, and, if so,

TABLE 17

. Protens CoNTENT AXD PROPORTION OF VrrREOUS KERNELS FOR FAcH oF 4 NUMBER

oF SAMPLES OF WHEAT*

'\
. Proportion of—‘
Sample number | Protein content | iy oo e Lormels O\
A\
Per cent Per cent |\ +
1 10.3 6 N\
2 12.2 il '\\
3 14.5 8% )
4 11.1 §5
K7
5 10.9 AV n
6 181 2O s
7 o 91
8 10.8 %) 46
9 ae 61
10 ™10 17
1 SNy 10.2 36
12\ 1o o7
N\
13 \ 13.8 74
14 10.1 24
NS 14.4 85
016 158 96
:"\'$~ .
Nt 15.6 02
18 15.0 04
19 13.3 84
N\ 20 19.¢ 99
\

* These values are actual items
the correlation is not so high as is

» picked 80 s to show the relationship more clearly. Actually,
hown by these selected casen.

how closely. So even though the vitreous kernels do not cause the
differences in protein, we can still regard the proportion of vitreous

kernels as the independent variable and the

as the dependent variable.

percentage of protein

That means only that we are going to try
to estimate the dependent (protein) from the independent (percentage
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of vitreous kernels) even though there is no direct cause-and-effect
relation present.

The relation hetween the proportion of vitreous kernels and the
per cent of protein may be seen more readily if a dot chart is made,
showing the two variables for each of these individual observations.
According o the previous discussion, we shall regard the proportion
of kernels vitreous as X, the independent variable; and the percentage
of protein as the dependent variable, Y. In preparing the dot chart,
shown in Figure 12, we shall therefore plot the X values, or percentage

Protein cr:fcnf N\
n pgrrcen )
' 2 AN
- 7'\
18 g AN
KO
16 F - o~
]
e
-
T .~
".: [ ]
12 —t
1N
- " :.m'. .
» ‘..' ’
1o P, .
Wl—;—a—-‘*ﬁ%lﬂ"m

o 20N 40 60 B0 100
, 2 X3Vitreous kernels.in percent

Fig, 12. Dot chant Qh\owing relation of proportion of vitrsous kernels to
79N/ protein content of wheat.
AN
of vitreous ,lgéhfels, along the horizontal axis and the ¥ values, the pro-
portion ;§pr‘otein, along the vertical axis.
It id\ghite obvious from an inspection of the figure that a straight
lingyvould not do to represent the change in protein with change in
\if"lit;reous kernels. Some type of eurve is necessary. Let us see if the
stmple parabola is the proper type of curve.
“Fitting” a simple parabola. To represent the relationship be-
tween the two variables according to the formula

Y = a4 bX + eX? (12)

we shall have to determine {rom the 20 observations the vaiues to. assign
to the constants a, b, and ¢, just as before for the straight line we
had to determine values for @ and b. (Of course the @ and b for
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the parabola will not be the same as the values for the straight
line—unless ¢ happens to be zero, which would make the equation
for the parabola give a straight line instead.) The values for these
constants are determined by constructing and solving the following
equations: ®

S + Ceude = Zay

(13)
Caudb 4+ Cud)e = Zuy

and
a=M,— (M) — (M) (14}
: ' )\
The values necessary in eonstructing equations (13} ard\14) are
derived as follows: A
Use U to represent the X* values of equation {12h* 3

Then \‘
X =U 27
M, = o M, = ) M, ?J—]

2o = EX® — nMZ

Zzu = ZXU — nMM, | {18)

Su? = ZU2 — a2 |

Sry = TXY = nM. M,

Suy =BYY — nM M,
\\ o . .

After computing ¥hese values, the two equations (13) are solved

simultaneously 3@ /obtain the values for b and ¢, and then these
values are substttated in equation (14) to obtain the value for .

Table 18) Tollowing, shows the form of computation in the first
step tf).zobtain these values for the data of Table 17.

4

P 1}31 alternat_ive method is fo solve the following three equations simuliane-
%{m}y. The clerical work is about the same in both methods.

ne+ EX)0 + U =3V
ZEX)a+ EXD + EUX)e = IXY
Ea + EUX® + (Z0%e = YU

These equations are derived by the proceds explained in Note 2, Appendix 2.

*If U is made equal to X2 divided by some convenient number, say 1000, the
volume of necessary arithmetic can he materially reduced, without aﬂ'ec'ting the
aceuracy of the result. See Note 8, Appendix 2, for prood.
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TABLE 18

85

COMPUTATION, FOr WHBAT PRORLEM, OF VALUES NEEDED 70 DETERMINE

CoNgTanTs 0F TnE SiMrLE PARAROLA

Per cent Per cent

vitreous protein . .

kernels {minus 10)* X*and U AT U XY vy

X v
6 0.3 36 216 1,296 18 1038\
75 2.2 5625 | 421,875 | 31,640,625 165.0 | 12,3750
87 4.5 7,560 | 658,503 | 57,280,761 3015 | $40680.5
55 1.1 3,025 | 166,375 | 9,150,625 60.5 4°1'8,327.6
34 0.9 1,156 30,304 | 1,336,336 30,8, " 1,040.4
o8 8.1 0,604 | 941,192 | 92,236,816 798.83| 77,7924
ot 4.0 8,281 | 753,571 | 68,574,961 \864 0| 831240
45 08 2,025 91,125 4,100,628¥ 36.0 1,620.0
51 1.4 2601 | 182,651 [ 6,765,200 714 | 36414
17 1.0 289 49013 8&}21 17.0 289.0
36 0.2 1,296 46,656 | 1,679,616 7.2 259.2
97 7.0 0,409 | 912,673 1\88,629,281 673.0 | 65,863.0
74 38 5,476 | 405,224 4.29,986,576 2812 | 20,808.8
24 0.1 576 13,824 331,776 24 578
85 4.4 7,225 | G125 | 52,200,625 3740 | 31,790.0
96 58 9,216 | « 884 736 | 84,934,656 556.8 | 53,452.8
92 5.6 8,464 | 778,688 | 71,639,206 515.2 | 47,3084
94 5.0 830,584 | 78,074,396 4700 | 44,180.0
84 3.3 4, %B 502,704 | 49,787,136 2772 | 23,284.8
99 0.0 \\9 801 | 970,260 | 96,059,601 8010 | 88,209.0
1,340 6835, 107,566 | 9,259,238 (824,403,226 | 5985.6 | 542,584.6
2y

* T'o simplifsy "b‘;;é'fnllnwing caleulations, 10.0 has been subtracted from each protein reading
(See Note 3, a{a@m’d;x 23

2 &

The values at the foot of the table give the values called for in

eqmtmns {15).

S\mbohcuﬂy} the arithmetic appears as follows:

M, =" ="

M.

z2X
7

EY

ft

U

ki

130 _
20

685 _ 5495

%0

107,566 _ 53753

Qubstituting the values as computed for those shown
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TX? — a2 = 107,566 — 20(67) = 17,786
XU — nM,M, = 9,259,238 — 20(67)(5,378.3) = 2,052,316
U2 — aM2 = 824,403,226 — 20(5,378.3)% = 245,881,008
ZXY — nM_ M, = 5985.6 — 20(67)(3.425) = 1,396.1
SUY — aM, M, = 542,584.6 — 20(5,378.3)(3.425) = 174,171.05

These calculations give the values needed in equations (13), which
are to be solved simultaneously to obtain the values of b and ¢.* 8ub-
stituting the values just computed in the equations gives the twb,equa-
tions to be solved ag follows: o\

\

&) (222 + (Saw)e=Zay 17,786b-+ 2,{}52,3}:&:’; 1,3946.1
B) Crwb+(Eude=Cuy)| (2,052,3 166+245,881,ﬁ030 =174,171.05
The simplest way to solve these is by the Doqlittie method, as indi-

cated in Appendix I, page 464. ) x’,\\'

~ Solving the equations simultaneously:\g}ires b= — 00873, ¢=
0.001442. These values are then substitiitéd in eguation (14) to cbtain
the value for a. N

a =M, — (M) — e(B3)
= 3425 ~ (—0.0879)(67) -+ (0.001442)(5,375.3)
=4 1.56 '\i.m.’\

With our valuesfor'a, b, and ¢, we ean now write out the equation
;0;‘1 the parabola,(¥;'= a + bX + cX® (12), for this particular case as
olows: £ .

Y Y = 156 — 0.088X + 0.00144 X2

.S'ngcg}o was subtracted from the pereentage of protein before ealcu-
lahn%~the equation,® to estimate the actual percentage 10 must be added
@e}e in, making the equation read

Y = 1156 — 0.088X + 0.00144 X2

This then is the equation of the simple parabola which comes
nearest to describing the relationships between ¥ snd X. From it
the percentage of protein in a given sample of wheat may be estimated
from the percentage of hard, dark, vitreous kernels in that sample.

5 Bee Note 3, Appendix 2, for

proof that t.h d i
for 2(22) S (ay), ot 15 does not affeet the values obtained
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We ean see how the estimates are made by working them out for
some of the samples. If we take the values of X for the first five
gamples in Table 18—6, 75, 87, 55, and 34, for example—and substitute
them in equation (I) above, we obfain estimated values for ¥V as
follows:

When X = 6
¥ = 11.56 — 0.088(6) + 0.00144(36) = 11.08
When X =75 ’ A~
Y = 11.56 — 0.088(75) + 0.00144(5625) = 13.06
. "\\\
When X = 87 . A\
Y = 11.56 — 0.088(87) + 0.00144(7569) = 14.@93 hy
When X = 53 .

Y = 11.56 — 0.088(55) + 0.00144(3025)2€)11.08

When X = 34 : x:\\.‘
¥ = 11.56 — 0.083(34) + 0.0014461156) = 10.23

Substituting each of the values of % in the formula in turn in
a stmilar manner, we obtain estimgtéd values for ¥ as shown in Table
19. So as to distinguish betwegndthe actual values of Y, and the
values for ¥ estimated from X according to the equation of the
parabola, we shall designaté bhe latter as ¥” values..

It is guite appare t'\frdm the. table that the actual and the esti- .
mated values generallry\fall rather near each other, the estimates part
of the time being/tde high and part of the time too low. We can
get a better idéa "7 the relation between the estimated and actual
values by plotiing both on a dot chart (Figure 13), gimilar to the way
i we did in «R{g{ire 12, using dots as before to represent the values of ¥
' Originall‘y: observed and crosses to represent the estimated values, Y.

Si%lge'ﬁﬁé Y’ values are all computed from the formula, the crosses all
lie oh 2 continuous smooth eurve, which we can gketch in freehaI}d, as
indicated by the dotted line in the figure, Now if we want to estimate
the protein for a sample with a proportion of vitreous kerne{s Il(')t
included in our problem, say 65 for example, we can deiiemctme it
cither by substituting 65 for X in equation (I), and eomputing It out,
or by reading from our smooth eurve the ¥ value corres.po.ndmg to
an X value of 65. Of course this graphic interpolati?n, as it is called,
will not be quite so exact as will the actual computation, but for many

purposes the result will be sufficiently accurate.
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Let us now examine Figwre 13 and decide whether the formula
for the parabela gives a satisfactory “fit” in this case—whether the
estimated values do agree fairly well with the actual. We see at
once that the eurved line of the estimates does come closer fo agreeing
with the actual values than any straight line eould. But on the other

TABLE 19

ComranisoN, For WuEAT Prosuem, oF Actoal Proteiy Content wite Prormy
ConteExT EstiMaTep FrRoM PER CENT 0F ViTREOTS KEaxsns on Basis ar

NE SiMPLE PARABOLA O\
¢\
S }]i;ﬂ'e;l:encc between
Per cent vitroous | Der cent protein | Letimated pereent | {1 ong esti-
kernels, X {minus 10), ¥ protein (m’mus 10)\M “mated protein,
Y .‘»} (¥ — ¥7)
6 0.3 10% —0.7
75 2.2 ~3.08 —0.86
87 4.5 AN\VE 80 —0.30
55 1.1 L\ 1.08 +0.02
34 0.9 N 0.23 ] 40.67
98 8.1 o308 6.79 +1.81
o1 1.0.8% | 5.50 —1.50
45 [1:"8 .52 ’ +0.28
?; im:]]\.dl 0.83 +0.57
L e g \NJ1.O 0.48 +0.52
36 A 02 0.26 .06
97 Ky 7o 6.60 40.40
74 R 3.8 2.95 +0.85
24 ,\“ 0.1 0.28 -=0.18
85 il 4.4 4.5t - -0
965 5.8 6.41 —0.61
o2 5.6 5.68 -0.08
04 5.0 6.04 ' —1.04
~ 8t 3.3 435 —~1.05
\ } 09 9.0 6.09 - 4+2.01

hand we sec that the general shape of the parabohc curve and the
general trend of the actual relationship is rather different. For low.
proportions of vitreous kernels, the estimated values are generally.
too low; for the highest proportions, they are also generally too low;
whereas for preportions of vitreous kernels rangmg from 70 to 9%
per cent, the estimates are too high. . o
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Apparently the equation of the simple parabola is not adequate to
describe this particular relationship. Especially for high proportions
of wvitreous kernecls, the estimates are quite inaccurate. For 99 per
cent vitrcous, the parabola would estimate 17.0 per cent protein,
whercus both samples over 97 per cent vitreous kernels had over 18
per cent protein. The failure of this cufve to give a satisiactory
“fit” is not due to any error in the computations but merely to the
fact that this formula cannot give the proper-shaped eurve to fit the
relationship in this case. The mathematical properties of the equa-
tion itself are such that, no matter what constants are used for a:{b,

Protein cantent )

in percent '\
Ny
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< 3

at & i

i8 ; i\
16 ey /
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78 P i
Yegerd nc;z e
12 4
""'q. & ’. 4 f:’l./

A -
S il

Sl N i
0% 20 40 60 80 100
N\ X - Yitreous kernels,in percent

Fia. 13. Dot cha'xzt’;{hc;ﬁving rélation of vitreous kernels to protein content of
o\ Mwheat, and parsbolic curve fitted to same.

&
and ¢, i?-i’;zh’not comte any closer to describing the true relation. The
methad Just used in computing ¢, b, and ¢ gives the best values for
Ll,gis’\éélse; any other three values substituted in the same formula
\Q'&ﬂd do even less well in “fitting” this particular set of observations.

“Fitting” a cubic parabola. The cubic parabola, type (f) .of
the equations on page 76, might be tried to see if it would describe
thiz particular relationship more closely.

The equaticn of the cubic parabola,

Y =a + bX + ¢X? 4 dX3 (16)

has four constants a, b, ¢, and d to be computed. Here again, of
course, a, b, and ¢ will be different from those we have computed
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previously, unless the d value comes out zero. The values b, ¢, and
d are computed by the simultancous sclution of the following three
equations: ® : '

- Use U to represent the X2 of equation (16) and.V to represent
the X3,

(Db + (Sru)e + (Sev¥d = Zay

Eaw)d + (Sud)e + (Sun)d = Suy 17
(Zx)b + Cuv)e + (Ev2d = Swy O
The value for a is then computed from the following éguation:
NS ©
@ =My —b(My) — (M) — d(My) .\~ (18)
The walues for a2, Sazu, Say, ZuZ, Buy are com-

puted as shown previously, equations (15). Tha ‘additional values
required in equation (17) are computed as leows’:

M, - Ef ,,\‘
n

Zuv = SUV-SAMM,

Zar = EX:F};— nMSMg,‘

IR EV2 — nM?
\géﬁ\= ZVY — nM.M,

(18)

It should be nGted that among the values required to “fit” this
cubic parabolanthat is, to determine the constants a, b, e, and d, are
such values/a3”2V2 and IUV. Remembering that V = X3, and
U = X2,5¢ heed to calculate X5 and X6, For X = 10, X6 = 1,000,000,
so for ¥ahies of X such as those in Table 17 , Tanging from 6 to 99, it
wogl\d \take a tremendous volume of computation to compute the
values required in equations (17), (18), and (19). This may be
“roduced by letting U = X2/100, and ¥ = X5/10,000, The computa-

¢ The alternative method here involves the simultaneous solution of 4 equa-
tions, as follows:

na + ZX + (SU)e + EVid = ¥

@X)a + EXHb + (EXV)e + (EXV)d = IXV
CUe + TWXP + GUBe + UV = SOV
CVa + VX + EUV)e + EVDd = IVY
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tion is not shown here in detail. It follows the general form of that
given in Table 18; and the solution of the equations (17), starting in
just as shown on page 200, may be most conveniently carried through
by the method shown subsequently on page 464,

Tlven when the eubic parabola is “fitted” to the data given, how-
ever, it does not give a satisfactory “fit.” Thus Figure 14 shows
the cubic parabols fitted to the dats, worked out ag just described.
The valucs found gave the equation

Y = 0.35 + 00345X — 0.1397(X2/100) + 0.1788(X3/10,000).{\

N
2 AN
7NN ¢

N

or, ¢learing of fractions,’

Y = 0.35 + 0.0345X — 0,0014X2 + 0.000018X3 ~\

|

Adding in the 10 which was subiracted from ¥ befq&ﬁiaking the com=
putations, the equation beeomes : \%

Y = 10.35 4 0.0345X — 0.0014X? -+ 0.000018X*

In Figure 14, the original observatigns.are represented by dots, the
estimated values from the cubic parabola arc represented by stars,
and the eurve of the simple paraholasis also shown. A curve has been
drawn through the stars to ghow the general shape of the cubic
parabola. N _

The last curve comgs much ecloser than the previous curve to
describing the relationghip which actually exists. Even so, however,
it is not. entirely satios}hctory, for it gives estimates which are still too
low at the very /bishest percentage of vitreous kernels. Except f-or
this portion, 4nd” the downturn at the beginning, it seems quite:
satisfactory. ¢ - | |

Therguare still other types of curves, however, some of which might
give betber fite than the ones we have tried. For mstance the fourth-
Oidﬁlﬂ'pérabola, :

O Y = a + bX + ¢X® + dX? + eX*

can be fitted by an extension of the methods just described, as can
parabolas with even more terms. Those are rarely useful, however, as
the preater the number of terms, the greater the tendency bfscomes' for
the curve to “wiggle.” In addition, the volume of arithmetic required
becomes extremely burdensome—the computations for the fourth-
order parabolas involving powers of X up to X

TSee Noie 3, Appendix 2, for proof of this step.
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Furthermore, there are only a limited number of observations,
20 in all, If a parabela werc fitted with 20 constants, for example,
it would simply twist and turn so as to pass through every observa-
tion. Binece it would simply reproduce these 20 ohservations, it would
be of no value at all in indieating the relation which preobably holds
true in the universe from which the observations in the sample are
drawn. (See Chapters 18 and 22 for further discussion and mathe-

Protein content
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Fra. 14. DKB'\éhz;rt, with parabole snd cubic parabola.

matical measuregyof this question of the sampling significance of a
fitted curve.) 1:'\

Fitting lines or parabolas to time series. In studying time series,
it is somé\ﬁn{es desirable to fit a straight line or a curve to the suc-
cessive}@bservations as & means of determining the long-time trend.
I{le’ﬁéchniqucs of time-serics analysis lie outside the scope of this book,

nd therefore are not given especial consideration here.’ Fitting 2
mathematical trend to a time series involves regarding the succes-
sive months or years as values of the X, or independeni, variable.
The fact that these values are regularly spaced, 1, 2, 3, 4, ete,, and

8 An excellent discussion of the methods and meaning of time-serfes analysis is
given by Frederick C. Millz in his textbook, Statistical Methods, Chapters V1J,
VIII, and XI, revised edition, Henry Holt and Co., New York, 1938. See also
Max Sasuly, Trend Anolysis of Statistics, The Brookings Institution, Washington,
1934, : S '
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that the same suceession reoceurs in many problems, makes possible
special methods and special tables, which greatly reduce the labor
of fitting the cquations. This method of computation, known as
orthogonal polynomials, should be used in determining lines or para-
bolic curves for such data.®

“Fitting” a logarithmic curve. Some of the other types of curves
mentioned on page 76, particularly types b, ¢, and d, involving
logarithms, and type e, using reciprocals, may be fitted with relatively
little computation. The metheds of fitting one of each of these types,
may be shown for the present case, even though they may fail to give
any better fit than the curves which have alrcady been computed.

The three simple types of logarithmic curves, b, ¢, and di may all
be fitted by cxactly the same methed previously usedin ‘fitting a
straight line, except that the logarithms of X, of ¥, oréf both together
are employed where otherwise the values of the vaﬁ}oles themselves
are used. Comparison of the straight-line formulaWith the logarithmic
formula indicates how this is done. -,x',\\'
represent the logarithms of the X values| our equations will change as
follows: \

®) log ¥ = a 49X, to ¥ = a + bX
(o) IogY?&;{:blogX,to7=a+bf

(@ FK=a+blogX, toY =ac+bX
K

In each ease it is @wident that the new equation is identieal in form
with the simple s;rﬁgﬁtalinc equation,
;\'jw\ Y=a+bX

\% -

and the sathe methods may therefore be used in determining the eon-
stantd @ and b as were uscd earlier in equations (8) to (11).

\Sdme indication as to which one of the three logarithmic formulas
will come nearest o fitting a given set of data can be obtained by con-
verting both the X and ¥ values to logarithms, variables X and Y, and
then making dot charts of ¥ against X, of Y against X, and of ¥ aga.iz'lst
X. If one chart shows the dots Talling in substantially a straight line

® For methods of fitting orthogonal polynomials, see Frederick E- Croxton szd
Dudley J. Cowden, Applied General Statistics, pp. 433-35, Prentice-Hall, Inc, New
York, 1940, and R. A. Fisher, Statistical Methods for Research Workers, seventh
edition, Oliver and Boyd, Edinburgh and London, 1938, pp. 148-165.
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the équation corresponding to that chart will give the most satisfactory

ﬁt 1a
The ﬁrst step in applylng any. one of the three logarithmic equa-
tions to the data of the wheat example is to work out the Jogarithms

TABLE 20

VARIABLES IN WHEAT PROBLEM AND LOGARITHMS oF ViLuss

Logsrithms of Variablegd® \
Per cent protein Per cent vitreocus
kernels Protein Y 1t§eous kerne}.s
¥ X ¥ WX

10.3 i 1.0i13 2°L 0.778
12,2 - 75 - 1.086¢ ’\ 1.875
14.5 _ 87 1.181 1.940
11.1 55 Jods 1.740
10.9 34 : \1 37 1.531
18.1 98 {N.258 1.991
14.0 91 O 1.146 1.959
10.8 45 1.033 1.653
11.4 51 W8 1.057 1.708
11.0 17 N 1.041 1.230
10.2 36NN 1.009 1.556
17.0 0% 1.230 1.987
13.8 (NN 1,140 1.869
10.1 \'\w 24 1.004 1.3%0
14.4 s 85 1.158 1.929
158 LD 96 1.199 1.982
15.6 AN/ 92 1.193 1.964
15. 0N 94 1.176 1.973
1384 84 1.124 1,024
¢ by (] 8] 1.279 1,996

* logamhms 1o base 10,
g \

\ and construet the three dot charts, to indieate which formula to use.
The form of computation is shown in Table 20

10 This is strictly true only if the “goodness of fit” is measured in terms of the
logarithms used.

Logarithms may also be used with parabola of higher orders, such as:

Log ¥ =a + bX + cX?

Sach involved curves will not be considered at length in this book, however,
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Tt ghould be noted that in working out the logarithms nothing can
be added or subtracted from any of the variables (exeept for round-
ing off decimals).® In all the previous work the protein had heen
stated as profein in excess of 10 per cent, but now the original per-
cenfage figures are used once more. That is because logarithms deal
with refafive values, and the relation of 1 to 2 is quite different. from the
relation of 11 to 12. All the previous equations have dealt with abso-

Log Y(¥) i ~
- Y . .
2o ¢\
* '\
(L e\ '
| i .‘«-Q'\
10 —
05 10 &N 20
Log X,X)
’...\" ’
1z - do\ ¢
$
LI - '
o L LONET
' B 15 20
A\ LogX(X)
Fie. 15. Dot chartdiliustrating log ¥=f(X); ¥ =/(log X); log ¥=f(log X).
O '

lute values of. differences from the average; and the absolute difference
between 14hd 2 is of course just the same as that between 11 and 12.

TFigate'15 gives the three dot charts in which the three different
waysief combining the logarithmic and aetual -values are shown.
Nohe of the three gives a very close linear relation, but the one where

Y and X are plotted seems to come nearest. The equation
logV =a-+bX, or ?=a—|;b:?f
will therefore be used,

d, however, they can be “coded” by

11 Afler the ) ith: ompete
e logarithms are once comp blos have been treated

sublracting & constant or by division, just es other vari
formerly, with the same effect on the final constants obtained.
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The values necessary to determine a and b are as follows, using
equations (9) and (10): .

XY, M, M; ZX°

Table 21 shows in full the computation of these values from the
original values of the-two variables.

N
TABLE 2i n L
RGN
CoMPUTATION, FOR WHEAT PROELEM, OF VALUES NEEDED T¢ DRTEAMINE
Consrants ¥oR Locarrmumie Corve 3 o
\ Y

<

"’\\.11 : i
Per Oe'nt E;:.r : CE‘:::: Logarithms of \Y; Extensions .
protein kernels Y A\

Y X ¥ \‘\\ Xt Xy
10.3 i 1.013 \J 36 6.078
12.2 75 L.086. 5,625 81.450
14.5 87 ~2a61 7,669 101.007
11.1 55 o Togs 3,025 57.475
10.9 34 L1 % 1087 1,156 35.25%
18.1 9 1.258 9,604 123.284
14.0 91 () 1.146 8,281 104.286
108 45, 1.033 2,025 46.485
11.4 A\ 51 1.057 2,601 53.907
11,0 Y 1.041 289 17.697
12 ()7 36 1.009 1,206 36.324
170 7 97 1.230 9,409 119.310
13.80) 74 1.140 5,476 $4.360
A0 24 1.004 576 24.096
wid4 85 1.158 7,225 08,430

S \ 158 96 1.199 9,216 115.104

QO 156 T2 1.193 8,464 109.756

15.0 04 1.176 8,336 110.544

13.3 84 1124 7,056 04.416

19.0 99 1.279 9,501 126,621
Sums......0 ZX = 1,340 | 2Y =22.380 | 3X? = 107,566 XV = 1,545.888

This computation gives the values necessary to compute a and b
by formulas (9) and (10}.
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The averages of X and ¥ of course are:

ZX 1,340

M, = = e 67.0
Y 22389

- = — = 1.
My n 2 11945
Then
XY — nM, M. 1545.888 — 20(67)(1.11945) )
b= = = 0.0025760°\
X — pM? 107,566 — 20(67)° .
and : (D)

'\
a = M; — b(M,) = 1.11945 — (0.002576}(67) = 0.94(3‘2 N

R

In terms of the variable, the equation required is tpP\rGIJOre

7 = a + bX = 0.9469 + 0.002576X
or . ‘x:\\.
log ¥ = a + bX = 0.9460.J=0.002576X

The percentage of protein can ngw‘;,bé estimated from the propor-
tion of vitreous kernels observed dar any ssmple of wheat, by sub-
gtituting the percentage of Vitregjus‘kernels (the X values) in this equa-
tion and working it out. Thus for the first example, with 6 per cent
of vitreous kernels, it wgulgi work out as follows:

O

log B > ¢ + bX = (0.9469 + 0.0026(6)

IogY = 0.9624 |

7.3 o -
Using = t2 \kklé“\o’f logarithms we find that the number corl:espondmg to
the logarilinh 00624 (that is bo say, its antilogarithm) is 9.17. The
estimat&d proportion of protein is therefore 9.17 per cent.
~gimilarly if the proportion of vitreous kernels in the gecond s.ample,

73} is substituted in the equation, the work to calcuiate the egtlmated
propertion of protein is: ' :

log ¥ = a -+ bX = 0.0469 + 0.002576(75)
log ¥ = 11401 -
antilog 1.1401 = 13.81

The estimated proportion of protein is therefore 13.81 per cent.
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Table 22 shows this computation carried through for each of the
20 obscrvations.

TABLE 22

COMPUTATION, FOR WHEBAT PROBLEM, OF ESTIMATED PrOTEIN CONTENT TROM
Prs CENT oF ViTeEous KERNELs oN THE Basis oF a Logaritamic CTrvE

(Log ¥ = 0.9469 4 0.00258 X)

Estimated per cent protein Percentage ¢frors in
szr cent - . Actualt estimating ‘protein
‘E:""“ Estimated | Antilog of per ech propgstion

nels ; : protein Ay

logs.rithm estimate 109(-" _ 1_00)

x - ¥ ¥ Y o\t
6 0.9624 9.2 103~ +12.0
75 1.1401 13.8 128V —116
87 11710 14.8 JRLY: — 2.0
55 1.0888 . 123 SO — 9.8
34 10348 108 ~/hS 108 + 09
98 1.1993 158 N\ 18.1 © 4148
o1 1.1813 152\ . 14.0 - 79
45 1.0628° Care” 10.8 - 69
51 1.0783 ~JZ0 114 - 50
17 0.9907 0% 08 . 110 +12.2
36 1.0306 7 110 10.2 — 73
97 11968\ 15.7 170 + 8.3
74 1.$§.’ 13.7 13.8 + 07
24 1 10.2 10.1 — 10
85 (11659 147 144 - - 2.0
96 WO11942 15.6 158 + 1.3
92 N 11839 15.3 56 + 20
(TP 1.1890 158 150 — 3.2
84\\" 1.1633 148 13.3 - 89
ﬁg 1.2019 15.9 19.0 +18.5
7 N

PR

N/ It should be noted in this table that errors made in estimating the
proportion of protein ave stated as relative errors rather than absolute
errors. That is done because the thing that is really estimated is the
logarithm of the percentages of protein, or ¥, and the errors are
really the differences hetween the actual logarithms and the estimated

logarithms. If 2 is used to stand for the error, in this case z is really
in terms of logarithms, that is: '

z=1log Y — estimated log ¥, or ¥ — ¥’
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or In terms of natural numbers:
antilog E _actual ¥
antilog ¥’ estimated ¥

Sybtracting the eonstant 1.00 and muliiplying by 100 changes this
relative figure to the percentage which the observed value is above
or below the estimate *® :

Where log YV is taken as the dependent variable, as has been done
here, fitting the equation by the methods just shown involves makin
the square of the logarithmic residuals around the line as small ag
possible, ‘That means that instead of minimizing the sum of, the
absolute crrors, squared, as heretofore, we now minimize the swn of the
percentage errors, squared. In some cases it may be (jegrirﬁd to use
the logarithmic curve, yet to continue to minimize the gbsoiute errors.
Relatively simple methods are available to accompﬁsh that result.’®

anti-log 2 =

12 The reason for making this distinction will be seenlater on, when the gues-
tion of measuring the accuracy of the estimate is tal§e' A

18 Tq fit the equation AN
log ¥ = a + bog
under the conditions that the sum of the squares of the absoluie deparbures of the
estimated values, ¥/, from the actusl va.lligé; Y, will be as small ag possible, deber-
mine the values of @ and b by solving :’éhe equations .

=(YAe + (VX = VY
S@ B + XN = ZYEY

where ¥ = log ¥, and X &\)g X, as ahove. )
To compute the sevetal sums involved in thess aquations, the following form
may be used: \ & 5

A —T T o | e

X Q"\* y? X Y | »x | rfF | ¥ | VX

’ .s’\\ '

6 [NN0'3 |106.00 | 0.778 | 1.018 | $2.5¢ | 83.61 | 107.47 | 64.21
75¢ 122 | 148,84 | 1.875 | 1.086 | 279.08 | 303.08 | 161.64 | 523.27
QO
Bumg | — Tyt — —_ sye% [IVET| =Y Tyixe

The two simultaneous equations can be solved conveniently by the same pro-
cedure deseribed in Appendix 1, page 464. Dern

For the derivation of these equations, see W. Edwards Deming, ont Ngz;s o
Least Sguares, pp. 136-141, U.S. Department of Agriculture Graduate Benouvt,

Washington, 1938,
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Tn Figures 16 and 17 the aetual proportions of protein, shown as
dots, are compared with the estimated values as worked out by the
logarithmic relation. In the first of these fig-

,!;("" "] ures the actual and cstimated values are both
stated in terms of the logarithms. It is quite
12 apparent here that this equation assumes a
straight-line relation between the proportion of
1.3 vitreous kernels and the logarithms of the pro-
portion of protein; since they were computed
0 by a straight-line equation (log ¥ ='a £ bX)

of s0 oo the estimated values all lie along the,eontinu-

ous straight line indicated. The\nekt figure,

F. 16. Dot chart show- however, compares the actyal, proportion of

ing observations and protein with the estimated, Both stated

f“f;'e‘}i, il:f ;‘;} 0?;“1‘3;21 actual terms. Here the ™ continuous curve

sithms of 7. Which the logarithmig\produce in the esti-

' mated actual valueg\s clearly shown. The re-

lation hetween the proportion of vitreghs“kernels and the percentage

of protein, as shown by this curvepdoes not agree with the actual
relation as shown by the original” observa-

tions even as closely as did ‘the previous
curves computed by means,of ‘parabolic equa- Y
tions. ~ 20
Before discussing,,,ﬁiher ways of express-
ing the curvilinexr'\‘relaticm it might be well . -
to discuss thewptocedure to determine the y-10¢ o //
constants a“a\nd~ b af e_lther' of the Pther two T
{forms of diraple logarithmie equations were 1002
- 9.\ : : o 56 100
used, O _ x
If'hse“ equation Y = a + b log X is employed, Fie. 17. Dob chart show-
theJorm Y = a + bX is used. ing observations a.nd
.y "The values which must be computed are fitted Line for equation
\ y . _ Y =107, in natural
' M, M; ZYX, TX? values of ¥,

and the constants are determined from the equations

p o VX — nM,M;
X% — aM:

azMﬂ”"‘bM&
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Since the equation is in terms of Y itself, the estimated values, eom-
puted from the logarithms of X, will be directly in values of ¥, and will
not have {o be converted io the antilogarithms,

It the equation log ¥ =a -+ blogX is to be fitted, the form
Y = a -+ bX is need.

The values which will have to be computed are:

M; M; IYX, zZX?

¥
and the constants are determined from the equations : N\
b — E?)_E — nMzMz ,\1\
ZX? — nM: O
@ =My — by - RN

&

In this case the equation is in terms of Y, ﬂi‘e\log‘arithms of 7,
and the estimated values will therefore ha,ve\ te" be converted from
logarithms into natural numbers to show jusf’what the relationship is,
just as was donc In the case that was worke\& out in detail earlier.

It is cvident that no matter. whi'chlo‘ne of the three logarithmic
curves iz employed, the arithmetic¥s ‘exactly the same as in deter-
Iining the simple straight line,.ﬁﬁtﬁ the exception of computing the
logarithms and of substitutingtthe appropriate logarithms where the
actusl values would otherydse be employed. _

In cases where othgr"ﬁmcliﬁc&t-i@ns of the straight-line equation,
such as type (e), are %Q\B'e used, the process ig to transform the equa-
tion to a linear foriy then compute the constants just ag before.

Thus the typel _ '

' 1

o _
O~ Y __ a+bX
can be‘cg?h\Verted to the form
1

w\\: “\. ? =g- X
c},lettiﬂg i Q
Y b

Q=a+40bX

The computation can then be earried out in the usual way, :and
after the estimated values of @, ¢, are worked, converted back into

.
)

1
Y values by the equation ¥’ = 7
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Limitations of equations in describing relationships. Up 1o this
point an expression of the relation between the proportion of vitreous
Lkernels and the proportion of protein in each sample has been worked
out on the basis of a pumber of different mathematical formulas.
Fach different equation has given 2 different curve. Some, such as
the cubic parabola or the logarithmie curve, have given curves corn-
ing somewhere near to the relationship shown by the actual observa-
tions themselves; others, such as the simple straight line, have entirely
failed to deseribe the relation. Yet the exact slope or shape o.f\each
curve was determined from the same set of observations; ths con-
gtants of each curve were determined by “fitting” the same d;tta,, The

\
Protein confent Dy
in per Q
cent - ~
R4S
LI - ]
Yeorb Zrd Kod X7
1 ) p
yelo®?
113

SN §TT 20 40

{ &0 80 100
N

) X-Vitreous kernels, percent
F1a. 18\’;briginal observations, and several different types of fitted curves.

di\{exjsﬁy in the shape of the different curves is strikingly shown in

' Figure 18, where the several different curves are all drawn on 0ne
\"\'scédle, and the original observations are shown as well. It is quite
apparent that the differences in the shapes of the sevcral curves are
due solely to the particular form of equation used in computing them.
There are certain types of relations which can be accurately repre-
sented by each of these equations. When if is “fitted” to data where
that type of relation is really present, it can give a curve which
accurately represents the true relation shown by the data. Yhen,
however, as in the present case, an attempt iz made to represent a
relation by an equation which does not truly express the nature of
the relation, the resulting curve gives only a distorted representation
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would be that then we would haye some WAY of exthnating vilies
of the dependent variable (PCreentages of protenn frony the il
pendent variable (proportion: of vitreous kernelsi el o« wunhd
agree reasonably well with “the valucs aetually observed,  x, lony
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method describcd,' & would have ng meanig  hevan serving o
sitaple device foy\'estimating values of the one variable from known
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real or inherént nature of the relation.
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factorily) it might be that we could
of f‘e\(:f‘, sometimes it is found that
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be known than merely that it can express the relation. What that
something is will be taken up in a later gection.

I, however, it is not desired to delermine what the “real nature”
of the relationship is, but 1t is merely doesired to express it sulli-
eiently well so that values of one variable (such as protein content) can
be estimated from known valucs of another (such as the proporiion
of vitreous kernels), it does not make any difference what type of
equation is used, so long as It represents the observed retalionship
adequately. As a matter of fact, 1t is not really necessary toshave
an equation at all. If we have only a graph of the curve, or'a table
of values for one variable corresponding to values of anotler, from
which we can construct a graph, that is all that is 1’@&113-' NECESSATY.
For if we have a graph of the curve we can very readily estimate the
value for one variable from corresponding knowp Aetucs for another
by simply reading it from the curve. Thug $fi\Figure 13 the curve
for the equation

Y =a+bX +\cﬁ

is shown. If we wish fo estimate the percentage of protein for a gample
having, say 50 per cent of vitreols kernels, we need only to run up
the line for X = 50 and notelthe value of Y corresponding to that
point on the curve. In this\¢ase it is apparently about 10.8 per cent.
Similarly, the estimates-Ghthe percentage of protein corresponding to
any other percentage(of vitreous kernels within the range eovered by
the curve may Jbe\read off directly from the curve. Further, by
enlarging the chajx;t and making the scale sufficiently detailed, we may
read off the detimated values to any degree of accuracy that is desired
—-much nioe” accurately, as a matter of fact, than our ability to de-
terr:nime\:t-ﬁe real relation usually justifies, as will be cvident later on.
Jai ¥nany cases—perhaps in the great majority of cages—simply
the working expression of the relation may be all that is either needed
{0 desirable. The “true relation” between the variables may be sa
involved that a very complex mathematieal expression would be re-
quired to represent it properly. Even simple types of physical rela-
tions may require rafjher complex curves to represent them. In
many cases, too, the knowledge of the causes of the relation may be
g0 undeveloped that there is no real basis for expressing the relation-
ghip mathematically. The rclation between vitreous kernels and
percentage of protein would be an example of this type-—very complex
details of chemical content and physical and biologieal structure are
probably responsible, so complex as to be quite beyond gatisfactory
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reduction to mathematical expression. Yet the original observations
undeniably indieate that there is some sort of definite relation. For
many praefical purpeses it may be entirely satisfactory merely to
know what the relationship i5, without bothering at all with what
it really means. Even in scientific study that may frequently be
satisfactory as a first step, sinee in mary eases it is essential to know
what are the facts before trying o work out the reasons why they
are as they are, .

When the expression of the relation is not to be used excepiy as
an empirical basis for estimating values of the dependent, varidble
from the independent, or for gshowing just what the relatiohshap s,
the elaborate technique of determining the constants of \& mathe-
matical equation and working out the estimated values(By, the use of
that equation becomes largely unnecessary. In maply’cases a curve
can be determined with only a small fraction of $Ke effort required in
“fitting” a mathematical equation, yet it fits the ‘data quite as well
as any mathematical curve. In such cases the’etirve may afford quite
a8 satisfactory a description of the relation’}nd a basis for cstimating
one variable from the other as if clahobdfe computations had been
made. This method is known as freshgnd smoothing,

Expressing a curvilinear relation by a freehand curve. The
brocess of determining a freehand curve may be very simply illus-
trated. TIn fact, it has already been suggested in much of the previous
diseussion. The very simplest way to do it would be to plot the
original observations ©f, ‘toordinate paper, just as has been shown
so many times befowe, and then draw a continuous smooth curve
through them by &yein such a way as to pass approximately through
the center of thé,gbservations all along its course. Where the nature
of the rclation s indicated quite as closely by the original observations
as it is imHlic wheat problem which we have been discussing, this
might yiald quite a satisfactory expression of the relation. In other
cages “however, the observations might be more widely seattered,
afid the underlying relation might be more difficult to determine, so
that different persons, drawing in the eurves freehand, might draw
in rather different curves. Some method is therefore needed to give
a greater degree of precigion to the result, and to insure that the
same data would yield substantially the same result even in the
handg of different investigators.

‘This stability of result can be secured by a relatively minor ex-
tension of the methods already discussed in the first illustration of
& two-varidble relationship—the automobile-stopping problem. There
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it was found that by classifying the observations in appropriate
groups, the general nature of the relation could be expressed by
an irregular line connecting the several group averages. All that is
needed is some method of deriving a continuous smooth curve from

TABLE 23

CoMpuTaTION OF AVERAGES TO Usk 1w Firrine FrEgranp CUrve, FOR WaEaT-
ProTEIN PROBLEM

N\

Vitreous kernels | Yitreous kernels | Vitreous kernels | Vitreols kernels
below 25 per cent | 25 to 49 per cent | 50 to 74 per cent ?51-Q:100 per cenk

Fer e e Tt o] 2 o 1| o

kernels | PTO%I0 | kornels { PO | 1ol mqqtem kernels | Protein

6 10.3 34 10.9 55\ 11.1 75 12.2

17 11.0 | 45 10.8 7By | 11.4 | 87 14.5

24 10.1 | 36 10. 2,0\ 74 13.8 | 08 18.1
...................... B ) T O B ] | 14.0
....................... N ] 97 17.0
..................... S]] 86 14.4
.................. A Y IR I 15.8
.................. SN N R FURRUN B - 15.6
................ (2 VY Y TR PP B - 15.0

....... T N PO I - 13.3

........ A A REE IRRRECE SRERCREN SERTRS 99 0.0
Totals....| 47 »V31.4 | 115 31.9 | 180 36.3 | 998 168.9
No.cases.| 3NW....... 3 ... 3 ... 1) A PR
Aver&ges..\.';[ﬁ:‘ﬁ‘? 10.47 | 38.33 | 10.63 { 80.00 ] 12.1 00.73 | 15.35

N\
th?.t}:i'r\regular line. S8moothing out that irregular line, frechand, is

L &very evident and simple method. At the same time, starting with

\ Jthe irregular line of group averages gives a certain stability to the
process and insures that different persons would draw in the curve
with about, the same position and shape,

Applying the process to the wheat problem, the first step is to
classify the data into appropriate groups according to the values
of the independent variable, the proportion of vitreous kernels, and
to determine the average percentage of vitreous kernels and of protein
content, for the observations falling into each group. The diseussion
of the automobile problem has shown that, for the differences in
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averages to be significant, it is necessary for the groups to be large
enough o that the averages would not vary erratically from group to
group. In some cases s little experimenting might be necessary to
determine what this size would be. In the bresent case, inspection of
the dot chart showing the original observations (Figure 12, page 83)
indieates that a class interval of 25 per cent of vitreous kernels will
give groups large emough to make the averages of protein content
fairly stable from group to group.

The form of computation most convenient to obtain the gr P
averages, using groups of the size suggested, is shown in Table 23

The averages for the several groups are shown in Figure 40)indi-
NS ©
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T'w. 19, Original obsé}h;tions and averages of protein content, and frechand curve.

cated by cﬂlti; circles, whereas original observations are again shown
by solid/dots. A smooth ‘continuous dashed ecurve has been drawn
tl;rougl;’l}zthe scries of group averages, ignoring the individual ob-
sorvations and following only the general trend shown by the averages.
Thi§ ;mooth curve comes quite near to representing the relation shown
by the individual observations through most of its extent; but beyond
95 per cent of vitreous kernels it fails to follow the individual ¢hser-
vations—through that portion of the range the protein content rises
much faster than is indicated by the average for the whole range
from 75 through 100 per cent vitreous kernels.

Because over half of all the observations fall in this upper portion
of the range, it would seem reasonable to classify them inte smaller
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groups so as to give a better basis for determining this portion of
the curve. Let us try splitting the observations above 50 into four
groups, each with about the sume number of observations—say 50 to
69, 70 to 84, 85 to 94, and 95 to 100. The computation of the new
averages is shown in Table 24. '

TABLE 24

COMPUTATION OF SUR-AVERAGES TOR LasT Grours IN Wnsar PROBLEM, FOR Frrriva
FrEEaND CURVE

Vitreous kernels | Vitreous kernels | Vitreous kernels | Vitrgous kernels
50 to 6% per cent | 70 to 84 per cent | 85 to 94 per cent | 9540, 200 per cent

)
- S 7
L 3 o |
Per cent Per cent Per cent, s Per cent
vitreous Per ce}lt vitreous Per cen vitreous Pe”:@_“t vitreous Pe_l‘ ce.nt
kernels [P Totein | 3 ernels Protein | 1. iely "p{u\tem kernals protein
54 11.1 5 12.2 %. 14.5 I 08 18.1
51 11.4 74 13.8 £ ¢ 14.0 97 17.0
............... 84 13,30 ]} 85 4.4 | 96 15.8
........................ . A 92 15.6 99 19.0
...................... P SO o4 150 (..o et
Totals....| 106 22.5 23'35. 7| 39.5 | 449 73.5 | 3U0 69.9
No. cases. 2 ... B | B ... 4 b
Averages.| 58 | 11.28N77.67 | 13.1 80.8 | 14.7 | 97.5 17.48
L ) v
N

These new averiges, together with the previous ones for the lower
groups, arc«al#p plotted in Figure 19, and the number of cases that
each replp&@n’ts i indicated pext to it, to aid in judging what weight
to asgighyto that average, Finally, 2 smooth continuous curve has
beengdawn in, to pass as near as possible to the different averages
witholut making illogical twists or furns. As Is evident in the figure,

.»\:ija\'has been possible to draw the line with no point of inflection in it,
N\ ‘yet so that it passes quite near to all the group averages and ap-
proximately through the middle of the individual observations. Fur-
ther, the general course of the line is sufliciently well defined by the
several group averages so-that if it were redrawn, cither by the same
person or another person, it could have only minor differences from
the line actually shown. Making the chart over two or three times,
and drawing s separate curve on each frial, then averaging the tio or
three curves together, is one method of reducing the variation due to
individual judgment in drawing the curve.
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Cautions in freehand fitting, TIn drawing in the freehand curve
no attempt has been made to have the curve follow all the twists and
turns of the irregular line of averages. As was shown previcusly
with the automobile Hlustration, these irregular differences from group
to group may very readily be due to chanece fluctuations in sampling
where the groups are small. Not unless the groups included a very
much larger number of cases than these do here would cne be justified
in bending the eurve because of the position of a single group average,
and not even then unless there was some logieal basis for a curve of th
shape. In doubtful cases breaking up a particular group into smaller
groups, as wag just done in the wheat example, or reclassifyifighthe
ohservations into somewhat different groups, will help to défermine
whether or not the data positively indicate that an e)ctra, inflection
is needed. It is also necessary to see if some smgloe'abservatmn is
respongible for the abnormality; if it is, it is bettersto disregard it
and draw the eurve without the extra twist.

In drawing in s freehand eurve, it is desitable to place certain
logical limitations on the shape of the curvelkather than to have it be
purely an empirical representation of theévdata, To do this, it is
necessary to decide before the curve ig drawn what those limitations
should be. The limitations should, f)é based upon a logical analysis
of the relation under exammatmn, in the light of all the information
available to the investigator. » Tn'this case, for example, a considera-
tion of the hiological struciure of the kernels, of the portions which
run high in protein eco é@t ’and of the appearance and size of those
portions might lead o.nr\tn the following eonclusicons:

(¢} An mcreasa in the proportmn of vitreous kernels might be
associated with_fio change in the proportion of protein, or with an
increase in the. p}opomon, but never with a deecrease in the proportion.

(b) The}reiatmn between vitreous kernels and protein should be
a progredsive cne, consistently changing throughout the range of
varlatmn, rather than fluctuating back and forth.

<(8"The maximum proportion of protein would be found with the
largest proportion of vitreous kernels.

These three logical expectutions might then be expressed in the
following limitations to be placed on the shape of the curve to be
drawn: ,

(1) The eurve should have no negative slope throughout its length.

(2) The curve should have no points of inflection, but should
change shape continuously and progressively.

(8) The maximum should be reached at the end of the curve.
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These three logieal limitations are all fulfilled by both the curves
shown in Figure 19, yet they would exclude other types of curves
which might be drawn. For example, they would rule cut a curve .
with a hump or twist in it, or one which sloped down and then upts

In some caszes, examination of the data by the method of successive
group averages, cven after all the tests suggested above, will show the
presence of a relation which cannot be expressed within the logical
limitations imposed on the shape of the curve. In that case, the rea-
soning underlying the logical analysis should be reexamined, to see
if some step requires restatement and if the limitations tiemselves
should bhe changed. (For a further discussion of this inferaction of
induction and deduction, sce pages 443 to 452 of Chgpter24.) For
a curve to have real meaning, it must be consistent Sith a careful
logieal analysis, no matier whether the curvesass obtained mathe-
matically or freehand, or whether the logical Iixﬁif-ations are cxpressed
In a mathematical equation or in a set ofN\liritations placed on the
shape of the curve drawn by freehand fitting.""

Interpreting the fitted curve. It is gvident that the freehand curve
comes ecloser to agreeing with all thevoriginal observations than did
any of the mathematically deterniined curves. 8o far as can be
judged by eye alane, it “fitg"the relation actually observed quite
satisfactorily. So far as giving a definite statement of the relation,
and serving as a basis for estimating values of one variable from known
values of the other, tis curve, obtained by the very simple process
shown, is more satisfactory than any of the curves obtained by the
‘mathematical computations,

The use of the’frechand curve in estimating values of the dependent
variable, per’géntage of protein, from known values of the independent
variablg,;‘p}oportion of vitreous kernels, may be readily illustrated.
Taking$he first obscrvation, with 6 per cent of vitreous kernels, and
readljng off the corresponding proportion of protein from the curve
AN .

R

€ Y7 15This use of logical analysiz in stating the limitations on a freehand curve
may be compared with the use of logie in deciding on ithe type of mathematical
equation te empley. Note the subsequent section in thia chapter on “The logical
significanee of mathematical functions,”

18 For a more detailed discussion of the pros and cons of freehand versus mathe-
matical fitting, see W. Malenbaum and J. D. Bluck, The use of the short-cut
graphic method of multiple correlation, Quarterly Journal of Economics, Vol. LIL,
November, 1937, and The use of the short-cut graphic method of multiple correla-
tion: comment, by Louis Bean, and Further comment, hy Mordecai Ezekiel, and
Rejoinder and concluding remarks, by Malenbaum and Black, Querterly Journel
of Economics, February, 1940,
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in Figure 19, we get 10.4 per cent as the estimated protein content.
Similarly for the second observation, 75 per cent vitreous kernels,
the curve indicates 12.9 per cent as the proportion of protein. Reading
off the cstimated protcin for each of the 20 ohservations we get the
extimates shown in Table 25.

Even though in using the freehand curve we do not have an

TABLE 25 .
Actrau Per CeENT oF PROTEIN ANG PROPORTION BaTrvaTeD on Basis oF FREERAND
Curve ' A o
AY,)
- o~
Proportion of . W
Proportion of Actual proportion | protein estimated Djl’fé’rgnce between
vitreous kernels of protein from vitreous _|/gbtual and estimate
] kernels ol Ny
X ¥ ¥ = fOAN ¥-v
) 10.3 I{é\ -0.1
75 12.2 (129 —0.7
&7 14.5 O1es 0
55 1.1 »."“ 11.4 ~0.3
34 10.9 N 10.7 0.2
08 18.1 N 17.4 0.7
a1 14.0 ~8° 15.2 -1.2
45 10,8 11.1 —0.3
b1 H}é 10.3 1.1
éé \'\‘}m 10.5 0.5
A\ 10,2 10.8 0.6
97 WA 17.0 17.0 0
74 NN 13.8 12.8 1.0
24 M 10.1 10.6 ~0.5
88 o\ 4.4 14.2 0.2
QQ 15.8 16.7 -0.9
K. 15.6 15.5 0.1
S 15.0 15.9 -0.9
N\ 84 13.3 4.0 —0.7
NS 9% 19.0 18.0 1.0

equation stating the relation between X and Y, we still have a mathe-
matical expression of the relation between them. For we can write

¥’ = f(X)

which simply means that the estimates, or ¥’ values, are a function
of X; that is, for every X value there is some corresponding ¥’
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value, Of course, we can find what this corresponding value is only
by reading it off the curve; yet that is enough. We have a graphic
statement of the functional relation; if we had a definite formuls
to represent the curve, we would have an analyfical statement of the
relation as well.

Although we do not have a definite equation to represent the free-
hand ecurve, it is still possible to state the relation shown by the
curve other than in graphic form. This can be donc by constructing
a table showing, for whatever values of the independent varlahle may
be selected, the corresponding estimated values of the dependent vari-
able. Such a tabular statement of the relation may be thore readily
comprehended by readers not accustomed to graphi€ Ypresentation.
Further, it provides a basis for reconstructing the gutye on any scale
desired for the purpose of making further estimafes, “Table 26 illus-
trates this method of stating the relation. ."‘:,\\

TABLE 26 7Py
\ N

Per Cent or Proremv CorREsPONDING 10\VARIOUs PROPORTIONS OF VITREOUS
KreNELS IN SAMPLES oF WHEAT, ABINDICATED BY %) OBEERVATIONS
)

_ X

. Correspop{img . Corresponding
vft:_{;gmtfn Ofls proportion of ?roportmn of proportion of
us kerne {r Sein vitreous kernels protein
Per cent X\ “Per cont Per cent Per cent
10 A\ 10.4 70 12.4
o & 13 % 150
4075 10.9 05 16.2
’%53 } 11.2 a9 18.0
£ 1.7

Y "
) In the range where the curve is rising most steeply the readings
are taken more closely together, to provide for reproducing that por-
tion of the eurve more accurately. In addition, no readings are taken
beyond the range covered by the original ‘observations, nor are any
shown for the exireme ends where the observations are few. This
raises the whole question of how curves like this can serve as a hasis
for estimating when measurements are made of the independent vari-
able, Esuc-h as proportion of vitreous kernels, in cases other than those
used in- determining the relation. This problem will be taken up ab
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the end of this chapter. But first the question of whether to use
freehand or analytical curves will be discussed.

The logical significance of mathematical functions. There has
been frequent reference previously to the question whether an equa-
ticn did or did neot express “the real nature” of s relationship, with
little explicit attempt to explain exactly what that meant. To know
when we are justified in using the simple freehand curve, and when
we should go to the additional work of determining an equation for
the curve, we must understand the logical bases for different types
of equations, so that we can judge whether or not any partmular Jype
of curve can logieally be expected to express the relation in a;ny given
seb of observations,

The linear equation. Many relations are so mmp]e«t?nat ordinarily
we would not think of expressing them mathematifally. Thus, if a
train is traveling 45 miles an hour, the distance traveled is equal to
the time multiplied by the speed. TUsing ¢ forthe time in hours, d
for distance, and s for speed, the relation is,wt{bvmusly

d = g

This is a simple straight-line\relation. Now, if, in addition, the
train were o miles away frgm_a given station at the beginning, after
t hours of additional travel‘sm ay from the station it would be I miles
away, where ™

N D=a+td=a+st
)

This is no'ﬁi"éxpressed in the usual form for the straight-line
equation, W= ¢ + bX. This equation is therefore the one to be
used when\lt can logically be expected that each unit change in X
causes\au ‘torresponding change in Y, regardless of the size of X. Thus
i”eomputing the distance the train has iraveled we are assuming
that it continued to travel at & definite rate, say 45 miles an hour,
the whole way, and traveled the 200th mile just as fast as the first
mile, Now if we were dealing with something where the change in
Y was not the same for different values of X, the equation would no
longer be satisfactory. For example, an airplane on & long-distance
flight has to carry & heavy load of gasoline at the start and hence
cannot attain full speed; the farther it goes the lighter its load be-
comes and the higher speed it can make. In such a case the straight-
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line formula would not be applicable, since the speed of the plane
would increase with the distance it had gone. If the straight-line
formula were used, it would indicate that it would take just as long
to travel the first hundred miles as the lagt hundred, whereas actually
it would take longer than that to travel the first hundred and less
thar that to travel the final hundred. Ounly an eguation which in-
cluded some value that properly took into account the change in speed
with the change in distance could satisfactorily represent this relation.
The quadratic equation. Another case in which the rate af which
Y increases changes as the value of X increases is that of alweight
falling to the ground. Sinee the attraction of the earth,ig)or prac-
tical purposes a constant, it exercizes a constant pull“on"a falling
body. Thus, the farther s body falls, the faster it tedwels. It is just
as if, in throwing a ball, a boy did not let go the béll for it to travel
by its momentum but was able to keep shoying against it, adding
more and more speed to the momentum itlalready had. Physicists
express this relation by saying that the veldeity with which an object
falls is accelerated at a eonstant rate., flfhis equation, therefore, is:

Vs gt

where ¢ is a constant measuring the force of gravity, V is velocity in
feet per second, and ¢ is time in seconds.

With regard to theldistance a body will fall in any given time,
therefore, the caseis-/much the same as with our airplane. The
velocity, or speed, is\Increasing with every passing moment, and there-
fore the distamse-traveled in each succeeding second will be greater
than the dist:}ﬁce traveled in {he previcus second.

it we.a;sﬁume that the value of g in the equation is already known
to be\.@," the equation

\ V=gt

V=32

We can then estimate the distance traversed by & falling body in
each successive second by a process of approximation like this:

Let us figure that the average speed for each 2 seconds is the same
as at the midpoint (which may not be exactly right) and-then let us
estimate the distance traversed in those 2 seconds by multiplying this
average speed by the time. Then by adding all the distances together
we can get an approximation of the total distance.
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First we nced to caleulate the average speed for each period, using
the last equation, V = 32¢:

End of 1st second, speed = 32(1) = 32 = sverage speed for 1st two seconds
End of 3d second, speed = 32(3) = 96 = average speed for 2d {wo seconds
End of 5th second, speed = 32(5} = 160 = average speed for 3d two seconds
Tind of 7th second, speed = 32(7) = 224 = average speed for 4th two seconds
End of 9th second, speed = 32(9) = 288 = average speed for 5th two seconds

Then we can estimate the distance traveled in each 2-second periéa‘,

as follows; . O\
Period Average speed, feet  Distance in that )
per second period, feet, ‘.}‘
1st 32 64 N
2d 96 19, ¢
ad 160 a0
[ dth 224 O 448
5th 288 N 518
Estimated total distance,......s :{.:>. .. 1600

Another cstimate could be obtainéth by estimating the distance for
each second separately, for thereafiight be less error in assuming that
the epeed at the middle of each-déeond would represent the average for
that second. On this basis {h"e problem would work out.

Speed at middle of 1st se%é&dE 32 (3) = 16; distance in that second = 16
Bpeed at middle of 2d f8econd = 32(13) = 48; distance in that second = 48
Speed at middle of \3& jsecoud = 32(2§) = 80; distance in that second = 80
Speed at middle of \th second = 32(3}) = 112; distance in that second = 112
Speed at middlef 5th second = 32(43) = 144; distance in that second = 144
Speed at middle of 6th second = 32(53) = 176; distance in that second = 176
Bpeed af middle of 7th second = 32(63) = 208; distance in that second = 208
Speed at middle of Sth second = 32(73) = 240; distance in that second = 240

d st middle of Oth second = 32(81) = 272; distence in that second = 272
Speed at middle of 10th second = 32(81) = 304; distance in that second = 304

In 10 seconds, total distance traversed. . ... ... ciiaiienies

This comes out exactly the same as before. On reflection, it is
evident that this is to be expected. Sinee the velocity increases at
a uniform rate for each moment of time, the true average rate of apeed
for any period will be just half way between the speed at the be-
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ginning and at the end” 1f we consider our 10 seconds as a whols,
the velocity at the beginning is equal to
V = 32() = 32(0) = 0
that is, the initial velocity is zero; whereas the velocity at the end is
V = 32() = 32(10) = 320
The average speed for the period, therefore, is

0 Q)
+ 320 = 160 ‘
2 ¢\

which is exactly the same as the speed at which the body) s Talling at
the middle of the period, at the end of the fifth secondyywhich is

V = 32() = 32(5) = 160.L ¥

Computing the total distance traversed by ﬁlultip]ying the total
time by this average speed, we have Xy NY

Nt
d = (160)(10 1,600

giving exactly the same answer gpbu&- earlier computation.

The average speed during agyperiod of ¢ seconds is therefore 32¢/2.
The total distance traversed! .in’the t seconds ean therefore be deter-
mined by multiplying the‘average specd, 32t/2, by the total number of

- seconds, £, This gives N

\\ ’ | d= 32(3)5

or P\
72 £
& ' d= 32E
‘§
N = 16
N

\\; “Bo far, we have assumed that we know the acceleration, or rate of
Increase in veloeity per second. Suppose instead we had not known it
to begin with. How could we have found it out?

If we had used the symbol g to represent this value, we could have
carried out all the previous caloulations, except that we should have
used “g” where instead we have used ©32.”

~ *"'This would not be true of all types of relations. If, for example, velocity
increased al a changing rate, the smaller the units taken the mare acenrate would
_ be the result. ' :
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Our last formula then would have been
£2
4 d = g E
or

g
d=2f'

If we let g = b, the equation then would read
d=b ‘

We could readily determine the value for b by observmg the
distance a given body falls in 1 second,-in 2 seconds, in 3, setonds, etc.,

and then working out the probable value for the conata,rﬁ; just as has
been done before. v

After we had made measurements of several ‘distances d in the
several periods {, we could determine b mosb\;eadlly for the straight-
line equation by using T for £2. Then \s

d—bT

N

s

(which is the same form as ¥ = - & ~+ bX ).

Since we may assume ¢ —*’0 1(: follows, from equation (10},

m\ a= — bM.
e\J '
that \\ .

Hence

and oo

AN
\ \iri the terms of this particular example,

_Ms

=%,
which gives a basis for determining g, the acceleratxon due to gravity in
feet per second, simply by making observations of the time for bodies

to fall varying dlstances
Substituting an observation of 64 feet in 2 seconds in this equation
gives b = = 16; henee ¢ = 32.
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In this case it should be noted that the formula

g2
=7
d 2

iz derived on the agsumption that the attraction of gravity iz a con-
stant, tending to increase veloecity at a uniform rate per second, or
other unit of time. Only if this assumption is eorreet can the equation
be used. The equation is directly based upon this agsumption; the
reasoning used in deriving the equation also serves to explaiiNsvhat
the constants obtained really represent. On the basis of thigasrchzoning
the equation determined is not 2 mere empirical expyeg’é‘inﬁ of - the
relation between time falling and distance traversed. Jnstead, it is a
fundamental measurement of why that distance i What it s, and
relates it in & logical manner to the attraction of‘wt{le"earth.

Eieb\.%m‘ion ’// i ..\:'

Tra. 20. The trajgu(&ry of a projectile, illustrating the equalion
L) Y=a4bX +cXe,
X\

Although it aeudld be quite possible in this particular ease to draw
a freehand ciny¢ expressing the relation between time and distance,
it Would’xko'j}[)e so satisfactory as the mathematical equation. The
curve would mercly state what the relation was; the equation, in
addij@n, explains why it is, in the terms of a particular hypothesis.

. ~Phe parabolic equation. Another physical cage in which a definite
\i?}ation?hip may be established logically, and then measured statis-
tically, is the firing of a projectile from a gun. :

THsregarding the resistance of the air, there are three elements
which will determine the height the projectile will have reached at any
given instant after it leaves the muzzle of the gun, The simplest
of these elements is the height of the muzzle of the gun itself, repre-
sented by @ in Figure 20. All the subsequent changes in elevation will
obviously have to be added to that.

The second element is the rate at which the projectile is moving up-



LOGICAL SIGNIFICANCE OF MATHEMATICAL FUNCTIONS 119

ward at the instant it leaves the muzzle. That is dependent, of course,
on the angle at whieh the gun is elevated and the muzzle velocity. If
the gun were elevated 1 per eent from the horizontal and the muzzle
veloeity were 1,000 feet per second, the projectile would leave
the muzzle moving upward at the rate of 10 feet per second. If there
were no resistance of the air, and if there were no foree of gravity
to pull the projectile off its course, its momentum would carry it on
in this dircetion to infinity, as illustrated by the straight line in the
picture, Here b represents the increase in elevation the projectile
would attain for each additional second of flight, and a and bt the ele.
vation 1t would attain if gravity did not influence it. ¢\

But gravity is at work too. As we have already seen, a&soon asa
body is released, the pull of gravxty tends to move ity downward at
ever-increasing speed. Even if it iz headed upwarc[ vis when shot,
from a gun, the pull of gravity starts tending togpull it down. The
diagram illustrates what happens, with € used to represent the distance
the body would have fallen if it had no upwa'na‘ velocity. At first the
gain in height from its upward momentuﬁh is more than enough to
offset the tendeney to lose height becaufe of the pull of gravity, and
the projectile moves upward along thg eurved course indicated. But
fmally the loss due to gravity: becames oreater than the gain from its
original upward momentum and the trajectory gradually turns down-
ward, until the projectile finally comes to rest in the earth or on its
target. - ~\

The height that & \pm]ectﬂe reaches at any moment is the sum
of these three componen s—the original height, the upward course, and .
the loss by grayify;™ Its height, then, can be expressed by adding
together the three’elements. .

a remaingsthe same, regardless of the time elapsed.

B, the}mght due solely to the original momentum, depends on
the time) Increasing as the time increases. If we let b represent the
m;t@ahrate of gain in elevation per second of time, B can then be

statad:
B = bt

Finally, € depends on the time elapsed, and, as we have just seen,

varies with the square of time. With the same notation as in our
falling-stone problem, but with C substituted for distance fallen

O———t” ct2
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Adding these three elements together, we obtain the equation for
the height of the projectile at any instant, letting H represent height
in feet. .

H=a+ bt + ci?

It will be seen that this equation is exactly identical in form with

the equation for a parabola

Y =a+bX + cX?

Measurements of the height of the projectile at various given times
after firing the charge, made for a given gun, firing the saig, charge
at the same elevation of the gun, would give a series of X afid Y values
which could be used in computing the constants ¢, b, and\e, €ven if all
were unknown to start with, _ A

If the equation were actually worked out, it would‘tell much more
than merely the graph of the relation. For if the Teasoning on which
the several different constants were includéd*in the equation was
correct, then the equation would furnish a,real explanation of why the
projectile moved as it did, in terms,.of ‘the laws of motion and of
gravity upon which all such movements depend.

Reasoning such as this, carrigd .6ut to much greater lengths, has
formed the basis for the scientifie “laws” which have been discovered
in physics and chemistry and*expressed in definite equations. The
methods for determining,the*constants in such equations, as presented
earlier in the chapter, were devised to serve in determining such types
of relations:. But t(heﬁ the same methods are applied to biological,
economie, educa{d(hal, or ather relationships in the natural or social

- sciences, theirovahie is much more limited. Only rarely is there real
basis for ;exf;écting a particular mathematical relationship such as
can be ,ex;prcssed in a given type of equation. In many cases our
kno:xil'}\ége of the reasoms for the relationship are altogether too
limited to enable us to say why the relationship is; and even where

e tan establish the reasons, they are frequently too eomplicated or

100 invelved—or even too biological —to admniit of mathematical treat-
ment. If we express & given relation by a formula, merely on the
basis that that formula seems to deseribe the observed relation satis-
factorily, we do not have any greater knowledge of the relation than
if we merely drew in a frechand curve. The equation is simply an
empirical deseription of the relation; of and by itse)f, it offers no
clue as to what the relation means, "

When to fit « mathematical equation. From this discussion, the
following tentative conclusion may be reached: Only when there 18
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some good logical basis for expecting a certain type of relation to hold
should mathematical curves be employed in describing the relation-
ship. When there is a logical basis for using a given formula, the
constants of the equation serve as an explanation of the real nature
of the relationship. In all other cases the mathematical curve has
no more significance than the freehand eurve; the latter may there-
fore be employed to describe the nature of the relation, and can be
determined with muech less expenditure of effort. That does not mean
that a mathematical eurve, based on adequate logical analysis, is ofno
additional value. If it can be shown that such a curve does filsthe
data, that may verify an hypothesis and so provide a “law’d Yo state
the nature of the relationship, which may be of far morg walue than
the mere empirical statement of what the relationship\is observed
to be, If, however, there is no logical basis for anytiing except the
empirical statement of the observed relation; ke’ freehand curve
iz just as valuable as one fitted by aid of a_mathematical equation.

Where the logieal expectations do not lea’gi\\o a relation which ean
be formally expressed in a simple equatjon,\they may, &s has already
been shown, still be sufficient to state)s set of limiting conditions
to be used in fitting a freehand curvel®

A mathematical equation usedn an economic problem. Econo-
mists sometimes use the hypothesis that for any one commodity there
will tend to be a constant/felation between the rate of change in the
quantity consumers would)buy and the rate of change in price. That
is, if an increase of, sa};\l per eent in price would cause a 2 per cent de-
Crease in consumptidn when prices were low, a similar increase of 1 per
cent in priee would still cause a decrease of 2 per cent in consumption -
even when prices were high and consumption was already low.

‘This e‘oénbnﬁc hypothesis ean be stated in definite mathematieal
terms guité as readily as the various physical hypotheses which have
beew-inentioned; for it makes certain definite assumptions as to the
pregise way the two variables {price and consumption) are related.

If C is used for quantity consumed and P for price, the statement
gays that the relation

c = j(P)

that is, that the quantity consumed depends upon and varies with
price, is a funetion of the type

C = kP®
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The reason for its being that type can be seen by stating the last
equation in logarithmic form:

logC =a+bdlogP

This says now that a given change in the logarithm of P is always
accompanied by a change of b times as much in the logarithn of C.
Remembering that the same absolute change in the logarithm of a
number always means a constant percenfage change in its actual
value, we ean sec that this equation states the economic hypothesis
that a given proportional change in price is always accompaied, on
the average, by a constant proportional change in consuingtion, no
matter whether price was high or low to start with. N °

The practical application of the logarithmie dem@njc‘lféquation may
be illustrated by a concrete cage. Table 27 shovgaé the slaughter of
hogs (under federal inspection) in the United Stéiés during the vears
1922 to 1927 and the average price paid by packers during those years.
If we assurne that all the meat and other products from these hogs was
consumed and ignore any possible shiftg fu‘the levels of demand during
that period, we may ask whether the/relation between the annual

TABLE 27

SravGHTER OF Hoos, ANDAVERAGE PRICE, AND COMPUTATION OF
LegAriramic CoRVE

. Alog € = &t + blog P)
N

W‘iiﬁtg‘: f’i\ Price of | Logarithms of data Extensions
Year* slaughtéréci]‘ hogst T
) :j@'} (P Slaughter Price cP FE
B _ —
\\~ Billion Doilars C P
AN\ ponnds per cut.
}922’—‘23 11.66 7.62 1.0667 . 8820 0. 94083 0.77702
~923-24 | 11.83 T.61 | 10730 | 0.8814 | 0.04574 | 0.77687
\ A924-25 10.25 10.71 1.0107 1.6208 1.04082 1. 06045
1925-26 9. 66 12.16 0. 9850 1.0849 1.06863 1.37701
1926-27 10.04 10.84 1.0017 1.0350 1.03676 1.07123
1927-28 10.99 9.20 1.0410 0. 9638 1.00332 0. 92891
Bums. ... [ ... 6.1781 5.8769 -6.03610 5.79243

* From November to October, inclusive.
T Live weight of hogs slaughtered under federal inspection,
{1 Average costs to packers, at live woight. Adjusted for differences in price level, to 1928 level



A MATHEMATICAL EQUATION IN AN ECONOMIC PROBLEM 123

average price and the consumption of hog products in the United States
during this period agrees with the hypothesis that a given propor-
tional fall in price causes a constant proportional rise in consumption.
We may at least roughly hold eonstant the effect of changes in price
Ievel by adjusting the price averages for coneurrent changes in the level
of wholesale prices.
Accordingly we “fit” the equation
logC =a - blog P
. Q"

{where €' = consumption, and P = price} A

A\

to the data by the methods previously discussed. The .a'cfohal'com-

putations are all shown in Table 27, N
¢ 6.1781 LY
T
Con 6
My =28 =.§’-Bgﬂ = 097948 L ©
n " v }

2(cp) = Z(CP) — nM:Mz <\
= 6.03610 — 6(1.02968)(0.97948) = — 0.01521
G = (P — ?}Mg'; 5.79243 — 6(0.97948)% = (.03614

3 (OR0.01521
B -2@2)\\? 0.03614
o = b = 1.02068 — (— 0.42036)(0.97948)
'Qt}“aa -+ bap
,s\\" = 1.4419 — 0.42086P
AVog € = 1.4419 — 04209 Iog P

N\ We may next test how well this equation describes the relation-
ship by plotting hoth the original observations and t-he. curve corre-
sponding to the equa_‘r}ion. . Figure 21 shows this comparison in terms
of the logarithmic values used in the computation afld with -t.he
logarithmic values of the function (which, of course, is a straight
line). It is seen that this straight line seems to fit the orlgn}al values
quite closely; they fall very close to it, above and below, in such a
random fashion that no other type of curve seems necessary.

= — 0.42086
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The comparison may also be made in terms of the original values,
uging the estimated values of the curve transformed from logarithms
back to real numbers. Figure 21 shows the comparison of these values.
Here again, the demand curve is seen to be a satisfactory “fit” to
the actual data.®

The economie hypothesis as to the relation between price and con-
sumption would therefore seem to be borne out so far as this par-
ticular illustration is concerned, and with the assumptions stated.
The size of the constant, b, — 0.42, indicates that anywhere along the
curve a 1 per cent increase in the price of hogs is accompdnied by
approximately 0.4 per cent deerease in hog consumption, or @ice versa

"N

Log of Actual consumphion ¢ ™
consumpticn Billions, of pounds /3
14 — 2.0 (G224
1.0
L0 10.0 2
|
08 | ’ ) ) -
0.8 0.9 1.0 2 ANYYT 8 9 1018 123

Log of price Y NS Adtual price,in cents per M.

Fia. 21. The relation of conmmptidﬁ" of hog products to hog prices, fitted by a
logarithmic demand curve, both, inogarithms of consumption and price and in
_ “matural pumbers,

The wheat-protein:e}amp]e, en the other hand, illustrated a case
where there was no“lpgical basis for the use of any particular equation
and where a fredhdnd curve was therefore as satisfactory as any other
type and gawela better fit than any of the analytical types which
were tried/).As has heen stated, the great majority of the problems
in the'\@,ﬁira,l and social sciences are probably of this type, where

\

18 S:ix observations, such as used i this case, are far too few to give stable ot
depéndsble results in price analysis or any other form of correlation, A curve
‘ﬂ}'ﬂm a sample of six observations is still less reliable than is an average from a
eample of six observations. The close fit of the line to the ohservations in this
cage is partly due fo the small number of observations utilized. The student can
check this by recomputing this exemple including additional data for a longer
period, say through 1937-1938, as given in Agriculturel Siatistics, p. 327, U. 8. De-
partment of Agriculture, 1939,

¥ In caleulating this simple illustration, no attempt has heen made to allow for
the effect of changes in’ other factors which might also influence hog prices, such as
the level of consumer buying power, the supplies or prices of other competing meat
animals, or the changes in export demand. Chapter 23 discusses actual price anal-
¥ses involving much more elaborate work than this shown here,
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the relation ean he measured even though the speeific causes for it
cannot be stated in mathematical language. Only where the relations
can be explained on some logical basis which lends itself to mathe-
matical statement is there justification for & large amount of work
to “lit” a specific formula; and even then, if it is found that that
particular formula does not give as good a “fit” as a simple freshand
curve, there would be question as to whether the hypothesis was in
agreement with the faets in that particular case.

Limitations in estimating one variable from known values of-an-
other. The methods shown go far provide a definite technigue by which
an investigator can determine the way in which the values of one
variable differ ag the values of another related variable dlﬁ'ér These
same operations afford a basis for estimating values of+ the dependent,
variable from given values of the independent varla“ble, for cases in
addition to those from which the functional relation was determined.
Whether such cstimated values, for cases not inglided in the original
study, can be expected to agree with the tme}\;alues if they could be
determined, depends upon two groups of bohfslderatmns (a) the de-
seriptive significance of the curve and ($).¥ts representative significance
when it comes to applying to new ohservatmns

These two groups of conmderatmns apply (a) to exactly what a
given curve means, with regmd wolely to the particular cases from
which it was determined; and (b) the significance of the curve with
regard both to the ablht,y\of those observations to represent the uni-
verse (whole group ﬂfacts) from which they were drawn and the
ability of the curvex represent the true relations existing in that
universe. Thisséeond group involves an extension of the points which
were raised in{the first chapter as to the reliability of an average;
discussion g fhese questions will be deferred to Chapters 18 and 19.

Just &\an average computed from a sample may differ more or
less Wldely from the true average of the universe from which thai
samp‘}.e was drawn, so s regression line or curve determined from a
saniple may differ more or less widely from the true regression in the
universe. The following chapter discusses this problem, and Chapter
18 presents methods of estimating how far the regression line or curve
from an individual sample may miss the true regression of the uni-
verse,

The representative significance of a curve depends upon the num-
ber of observations from which its shape was determined and how
closely the curve as determined “fits” those ohservations. Since the
number of observatlons usually differs along the different portions of
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5 curve, it may be much more reliable in its central portions, where
the bulk of observations occurs, than in the -extreme portions where
the number of observations may be much less. This may be espe-
cially marked in the case of complex curves fitted by mathematical
means, where single extreme observations may have a material effect -
upon the shape of the end portions. In any event, only those por-
tions of the curve where there are enough observations to make its
shape and position definite should be regarded as statistically de-
termined; the end portions, wheén dependent upon a few observations,
should either not be used at all or else stated as very rough 1xlca-
tions of the true curve. &, )\

It is particularly to be noted that determination df)the line or
curve of relationship gives no basis for estimating beyond the limits
of the values of the independent variable actually Obbf‘.ﬂ ed. No mat-
ter whether a formula has been fitted or nofpany attempt to make
estimates beyond the range of the driginal data by “extrapolation,”
ie., by extending the curve beyond the raﬁge of the observed data,
gives & result that is not based on the- Matlstlcai evidence. In case
a formula has been used which has g good logical basis, extrapolation
may give a result which it is logmal to expeet—but its reasonableness
Tests on the validity of the ]Oglc rather than on a statistical basiz.
The statistical analysis md;cates only what the relations are within
the range of the observatigns which are used in the analysis.

The “closeness” thh\whlch the line or curve fits the original data
is another eriterion “he reliance which can be placed in it. If the
data all {all quite®close 1o the line, that fact inspires more econfidence
in it than if $héy; differ widely and erratically from it. But there are
special statisbieal measures of just what this “closeness” s, and they
will be ﬁm separate considerations in the next chapter.

As{hoted earlier, many more cases are required to determine a
1elat10n with any degree of dependability than were used in the
hog consumption example just considered. That example was given
10 illustrate the type of problem where & definite equation might be
applied but not as an illustration of a real research problem.

Summary. In some functional relations, the change in the de-
pendent variable with changes in the independent variable canmob’
be represented by a straight line. Such a relation may be represented
by a curve showing the value of the dependent variable for each par-
ticular value of the independent variable. Curves may be fitted
to given sets of observations either by use of mathematical functions,
such as parabolag, logarithmic eurves, and hyperbolas, or by various
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processes of freehand smoothing. 'When there i some logical basis
for the selection of a particular equation, the equation and the corre-
gponding eurve may provide a definite logical measurement of the
nature of the relationship.,, When no such logical basis can be de-
" veloped, a curve fitted by a definite equation yields only an empirical
statement of the relationship and may fail to show the true relation.
In such cases a curve fitted freehand by graphie methods, and conform-
ing to logical limitations on its shape, may be even more valuable as
a deseription of the facts of the relationship than a definite equation
and corresponding eurve selected empirically. \

In any event, estimates of the probable value of the deperdent
variable cannot be made with any degree of accuracy forvyales of
the independent variable beyond the limits of the cases observed; and
can be made most accurately only within the range ywhere a consider-
able number of. observations is available. It miay”be possible to
extrapolate the curve if its equation is based\on ‘a logical analysis
of the relation as well as on the cases obs@‘?ed; but in that case
the logical analysis, and not the statisticaléexamination, must bear the
responsibility for the validity of the proeedure.

Note 1, Chapter 6, The methods degc}‘ibed in this chapter have been illus-
trated by determining the eurve expregsing the average change of percentage of
protein with changes in perceutagé Df:\jitreous kernels. In more general termns, that
is, they have been limited to dgtermining the relation

) ‘..’\ Y={(X)

Exactly the same met-hoéb}z{n be used to determine the reverse regression, which
would show the aveya.ée change in percentage of vitreous kernels with a given
change in percentage/of protein, Although this regression is not precisely the recip-
roeal of the othersibwill usually be found that, where a curve rather than a straight
line is necessar},;%o represent one regression, a curve will gimilarly be needed for
the other,&re’ssion‘ Tt will not necessarily be a curve of the same shape, how- -
aver, o{p‘ne that can be represented by the same equation

tion is used with the dependent variable

{e) on page 93, the further assumption is
ize of

mN’ﬁ{e’ 2, Chapter 6, When an equa
€tated as a logarithm, as types (b) and
in¥olved that the errors to be minimized vary proportionately with the s
the dependent variable. The standard error of estimate also must be stated as a .
pereentage of the value estimated, rather than as a netural number, For an
example of a problem where the range of error increases with the size of the
dependent variable, and where a logarithmic equation would therefore be justified,

see Figure 23, on page 154,
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CHAPTER 7

MEASURING ACCURACY OF ESTIMATE AND DEGREE OF
CORRELATION

) ~

The methods developed up fo this point may be used to'\estimate
the values of one variable when the values of another ake’known or
given, They also furnish an explicit statement of 'th{e‘ average dif-
ference or change in the values of the estimated or depéndent variable
for each particular difference or change in the va]ue of the known or

‘independent variable. But that is not enough “In addition it is fre-

quently desirable to answer three queries: \[{) How close can values
of the dependent wvariable be. estimated,.fl%m the values of the inde-
pendent variable? (2) How importantis the relation of the dependent
variable to the independent varxable? (3} How far are the regres-
sion curve and these relations, ‘as shown by the particular sample,
likely to depart from the truetvalues for the universe from which the

sample was drawn? Speciabstatistieal deviees, termed (1) the stand-

ard error of estimate anth.(2) the coeffictent and index of correlation,
have been developed~to meet the need indicated by the first two
questions. Errorformulas and knowledge of the distributions of
these coefficientg;\and standard errors for the regression line or curve,
provide appro¥imate answers for the third, under the assumption that
the conditiont of sampling are ideal (an assumption rarely valid
even ig?xperimental work).

al

N :"Ihe Closeness of Estimate—Standard Error of Estimate

Attention hasg previously been called to the fact that when some
dependent, variable, such as the distance required for an automobile to
stop after the brake is applied or the protein content in wheat samples,
is estimated from another variable, such as the speed at which the car
is moving or the proportion of vitreous kernels in the sample, the
estimated values in many cases will not be the same ag the wvalues
of the dependent variable that were originally observed. These dif-
ferences are obviously due to residual causes; that is, to variations
in the dependent variable which were unrelated to changes in the par-

128
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ticular independent variable used in the analysis. For that reason
the differences between the estimated values and the actual values are
termed residual differences or, more simply, residuals.

For linear relations. The meaning of the residuals and their use
in determining the standard error of estimate and the coefficient and
index of correlation ean best be understood if illustrated by a conerete
case. Such an illustrafion is given in Table 28. Here 18 observations
of the number of days (X) that horses worked on different farms
and the quantity of grain fed each horse (¥) have been fitted byna
straight line to estimate the quantity of feed from the days of work.
The estimated quantities;”¥”, and the residuals, z, or differencel be-
tween the estimate and the actual, are also shown. O

“TABLE'28 7.\
Duays Workrp rY Horsgs, Gramw Fep rEr HoRsg, anp G"IEA\IN ESTIMATED FROM
Days oF WoRE

$

%
g Nof

Grain fed, in Estimated prain Excess of actual
Days worked hundred weight ¢ feﬁ" over estimate
X Y My 2
107 49 48.0 1.0
70 28 40.9 -12.9
81 44 43.0 1.0
57 36N 3.4 - 2.4
87 {58 4.2 13.8
114 \ b\ 38 49.4 —11.4
73 W) 49 41.5 7.5
74 NE/ 53 41.7 11.8 )
42 H™ 33 35.5 — 2.5
90, £\™ 45 44.8 0.2
109N 50 46.7 12.3
59 39 38.8 0.2
N8B 38 4.0 — 8.0
~\J 59 41 4.6 - 3.6
NS o8 42 46.3 -~ 4.3
95 45 45.7 - 0.7
76 30 42.1 - 3.1
O] ) 46 46.3 - 0.3 -

* Computed by regression formula ¥ w= 27.43 -+ 0.1927X.

“The residuals vary from +13.8 to ~129. If we wish to say !mw
large they are on the average, we can ignore the plus ?.nd minus signs
and compute the average deviation. For the 18 residuals-in Table
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28, the average deviation is 5.25, and the standard deviation is 7.13.
If these residuals are grouped in a frequency distribution, they fall
as shown in Table 29,

The standard deviation of z ig different from the standard deviations
previously computed. Instead of showing the standard deviation of
grain fed from the mean quantity (that is, o,), it shows the standard

TABLE 29

. A
FrepqueENcY DisTRIEUTION 0F RESIDUALS IN FariMariNg Graim\Rep

N

N 3
Residual* oumber of Residuale |, Gorvumber of
1Mes ceeurring PN times oceurring
—16 to ~12 1 0 to ok 4
—~12t0 — 8 1 + 4to\8 1
— 8to— 4 2 + 830°+12 1
—4t0 0 6 {1}% +16 2

* As stated in Chapter 1, —I2 to.— 6 means from’ — 16 up to, but not ineluding, —12; snd so

on for the oiher groups. o\

deviation around a changing‘qﬂantity, depending on the number of
days worked. The o, isthils the standard deviation around the fitted
line of relation, and say be indicated graphically on & correlation
chart as a certaingarea’ above and below the fitted line. (Note Figure
22, page 151 of\Chapter 8.)

‘The standard-deviation is 7.13, so we should expect two-thirds of
the residuals)to come between +7.13 and —7.13. Of the 18 cases,
12 camp-#ithin this range of the line, or 67 per eent of all the cases.
Simi%Q{y, only 5 per cent of the cases would be expected to fall out-
Si@d‘;the range 20, or below —14.3 or above +14.3. :Actually
fighle come outside this range, which is cloge to the expeeted propor-
Jtion for a normal distribution with this limited number of observations.

Where the same set of conditions prevails as those under which
the original data werc selected and only the independent variable is
known, it may be desired to estimate the probable value of the de-
pendent variable frem the known value of the independent. Thus if
the number of days that horses work on other farms in the same arca
1s known, it may be desired to estimate the quantity of grain’ that
will be needed to feed them. Or in a case where yield of cotton
with various applications of irrigation water has been determined
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{note the example in the next chapter) it may be desired to estimate
the most probable yield on other fields, solely from the amount of
water applied. - In case the estimates were to be made for new observa-
tions taken from the same “universe”—for example, on the same soil
type, in the same area, and for the same year—as were the previous
samples, a knowledge of the standard deviation of the residuals for
original samples gives a basis for judging how closely the new esti-
mates are likely to approximate the true, but unknown, yields for the
new observations, Similarly in the feeding case it is evident that thé\
errors of estimate will not often be greater than 14.3 hundred weight
of prain, and usually will be less than 7.1 hundred weight. M

Since the standard deviation of the residuals does thus Serve to
indicate the closencss with which new estimated valuesaray be ex-
pected to approximate the true but unknown valucg,‘ it has been
named the standard error of estimate?

The symbol 8 is used to denote the sta,nu;%d error of estimate,
S,.- indicates the standard error for estimates 7 made from a linear
relation to X, by the equation ¥ =a + b WSimilarly, 8,.x would
indicate the standard error for estimates ©b Y made on the basis of a
freehand eurve relation to X, as indicated by the equation ¥ = f(X).

The standard error of estimate! jis‘theref_ore defined by the two

*

equativns: - N\
Sj=tar = 2_;_ :
AN (20.1)
A \ g E(zu)2
By = o = E—

AS

The standmcl\ error of estimate in estimating grain fed the horses
from numb&\of days worked, by the linear equation, is therefore 7.13
hundred‘wmght

For\curvﬂmear relations. The caleulation of the standard error
wherg a curvilinear function i used to express the relation may also
be illustrated by the horse-feeding data. From a freehand curve,
fitted by methods already deseribed, estimates of ¥ from the relation
Y =§ (X) were obtained, as shown in Table 30.

The standard deviation of the new residuals is 6.85. This is then the
standard error of estimate for estimates based on the curve.

The standard error of estimate of 6.85 from the curve, compared

t Chapter 19 gives more refined measures of the accuracy with which estimates
may be made for new observations.
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with that of 7.13 from the straight line, indicates that in both cases the
amount of feed fed horses in a year can be estimated, for the cases
included in the sample, from the number of days they work in a year
with a standard error of between 675 and 725 pounds. It appears
at this stage that the estimates made on the basis of the curvilinear
relation are a little more reliable than those based on the linear
relation,

TABLE 30 A

Davs Workep vy Honses, Gramv Fep PER HoRsE, anp ORATN EsTr 3’1-*@ FROM
Davs oF Wokk, BY FrEEHAND CURVE K

.'\
Grain fed, in Estimated grain | Bxeéss of actual
Days worked hundredweight fed “ d & over estimate
. X Vs ¥ & i 2

107 49 46.*5\\' 2.5
70 28 Al —13.4
‘81 44 Nad 2 - 0.2

&7 36 WA\ U874 —~ 1.4
87 58 S 4B.5 i2.5
114 38 PR\ 46.5 -~ 8.5
73 44 W8 2.2 6.8
74 53 42.5 10.5
42 334, 32.5 0.5
90 45 45.9 ~ 0.9
100 50 46.5 12.5
50 39 38.1 0.9
86 &7 88 45.2 - 7.2
80 Q) 41 45.8 — 4.8
9 42 26.5 — 45
95 \\J 45 46.4 — 1.4
7@’»'\\ 39 43.0 — 4.0

98 46 46.5 —~ 0.5

\ P——

O >

The standard error of estimate can also be used to indicate the prob-
able reliability of a. series of estimates of the values of the dependent
variable for new observations when cnly the values of the inde-
pendent variable are known, but only where it is definitely known that
the new cases are drawn at random from exactly the same universe
~the same set of conditions—as were the chservations from which
the relation was determined. In case they do not represent exactly the
same conditions—as if, for example, they represent a different peried
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of time >—then the standard error of estimate has meaning only with
respect to the scatter of the residuals around the regression line for the
cases used in defermining the relationship. It measures (when ad-
justed) what the differences probably would have been in the universe
from which the observations came but does not give more than a elue
or a possible indication as to what the differences may be when the
same relations are applied to data from new or different eonditions.

Adjustment of standard error of estimate for the number of ob-
servations, The standard deviations of a series of samples drawn. ffom
any stable universe will vary {rom one to another, owing to statistical
fluctuations. The same is true for the standard error qf,\'ektfma;te
computed for  fifted line. The standard deviations, or standard errors
of estimate, not only vary but on the average alsq'ié'r'e somewhat
smaller than the result that would he obtained from{a large sample
from the same universe, Because of this tendeNey of the standard
error of estimate from the sample to understa@ Jhe standard error in
the universe, an adjustment is necessary. AfAmbiased estimate of the
value of the standard error of estimate fof’ the entire universe may be
caleulated from the standard error of éstimate for the sample by the

use of the following equations:  {%
nd'?’: N
n _ NI 21.1
Sy -2 n—2 @0
hence \
2@ s n ) (21.2)
YEoa—2 n - 2 :

\¥
And for curvilingar funetions

N\ 2 71.82
\J =2 _ RF 0 . y-fix) (22 1)
AN Spepz) = = ‘
\ B —m n—m
hengay ™
m\ 7 E (2”2) 2 n
A% Bpiw = = (22.2)

In these equations, Sy is used to indicate the estirc}ated standard
error of estimate for the universe, just as o was used (in .Chapter 2)
to indicate the estimated standard deviation in the universe from

which the sample was drawn,

2 Bee Chapter 2, page 15, for the other conditions assumed before error formulas

apply exactly.



134 MEASURING THE DEGREE OF CORRELATION

Tn equations (21.1) to (22.2), n stands for the nuraber of observa-
tions. In equations (22.1) and (22.2), m stands for the number
of constants in the regression equation, such as a, b, and ¢. In the
case of a parabola of the second order (type a), m would be 3; for
a cubic parabola (type f}, it would be 4. Where a freehand curve has
been used, it is necessary to estimate how many constants would be
needed to represent the eurve mathematically. (See pages 76 to 81
for the constants needed to represent various shapes of eurves.)

The standard error of estimate in estimating grain fed the horses
by the linear equation, after the standard deviation of the regidudls

is adjusted by equation (21.1), works out to be: R, \)
2 N\
Sre =3 O
"
2 'S
_ 18(7.13%) — 5719 )
18 — 2 Y,
8,z = 7.56 LV

The new value indicates that the errors &b estimating grain from days
worked, when the estimate is made‘fot new observations drawn at
random from the same unwerse,,wﬂl run slightly larger than was
indicated by the residuals for'the cases included in the study, as
tabulated in Table 29, 4

When the standard deviation for the curvilinear function is cil-
culated by equation (231, a different result from that before appears.
If it iz assumed that the regression curve used could have been repre-
sented mathematmany by an equation with three constants (such as
a parabola} t\hm ‘the correction works out to be:

..s'\\“ :S—E..f(x) = mzz”
\”\3 J - = M = 56.31
18 — 3
gy-f(x) = 7.50

The adjusted standard error of estimate for the curvilinear rela-
tion, 7.50, is barely smaller than that for the linear equation, 7.56.
This indicates that when estimates are made for new observations
from the same universe, the straight line is likely to give aboub as
reli_ablc results as is the regression eurve. Not unless the adjusted
standard error for the curve is materially smaller than for the straight
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line can the eurvilinear regression be expeeted to improve the accuracy
of estimate?

Units of statement for standard error of estimate. The standard
error of estimate is necessarily stated in exactly the same kind of
units that the original dependent variable is stated in. Where the
dependent variable is stated in feet, as in the automobile problem,
the standard error of estimate will be in feet; where it is in percentage
points, as in the wheat problem, the standard error will be in per-
centage points; and where it is in logarithms, as in Table 27, the
standard error will be in logarithms. 'Thus in a ease like that shown
irr Table 27, the standard error might be the logarithm 0.038, \/That
means that tJ:le logarithm of the estimates is likely to agree. with the
logarithm of the true values to within == 0.038, two-thirds"ef the time.
With an estimated logarithm of 1.00, the logarithm ofthe true value
would then be between 0.962 and 1.038, two-thirds)of the time. In
terms of anti-logarithms, this gives values of\0.16 and 1091, or
between 9.1 per cent above and 8.4 per ecent bel‘}W the value 10. Since
a given logarithmic difference always me}nﬂ the same percentage
difference, no matter how large or how{gmall the base to which it is
applied, when the standard error is thus stated in logarithms it indi-
cates the range within which thet estimates may be expected to be
reliable, not as absolute quantitws such as pounds of grain but as
percentages. In terms of abteolute differences, the estimate might be
expected to be right within-100 pounds, no matter whether the quant;ty
fed was estimated at \000 pounds or 4,000 pounds; whereas using
logarithms, if the estimate was expected to be right within 100 pounds
for an estimateydf 4,000 pounds, it would be expected to be right
within 25 pounds.for an estimate of 1,000 pounds.

The st ndard error of estimate is thug computed from the stand-
ard devigtion of the residuals for the cases on which the relation is
based. Tt ‘indicates the closeness with which values of the dependent
V:-}.mab}e may be estimated from values of the independent variable.
Tfs. gkact interpretation differs with the partieular units in which the
values of the dependent variable are expressed.

3 The values of §,.c are subject to errors of sampling, just 23 the values of o, are
subject to errors of sampling., Accordingly, the walues of Sy.. must be regarded
only 28 estimates of the trize values, 8., which prevail in the universe from which
the sample is drawn. Also, it must be remembered that the adjustment, m, for the
number of degrecs of freedom remaved, is only an approximate adjustment in the
ease of a frechand curve, and that this intzoduces a further limitation o the ac-

oLuracy of gy.mq.
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The Relative Importance of the Rélationship—Correlation

In certain problems it might be found that every bit of variation in
one variable could be explained, or accounted for, by associated dif-
ferences in the value of an aceompanying variable. Thus all the varia-
tion in the volume of a cube can be explained by the corresponding
difference in the length of one gide. No other variable is needed to
aecount for the volume of the cube. If we know what the length of
the side is, we can comptite accurately what the volume will he. 4l
the wvariation in volume can therefore be said to be explained, or
accounted for, by the known relation to the length of the si’de.\

In most problems with which the statistician has to deal/however,
all the variation cannot be explained by the relationyto another
variable, and residual variation is left over. As hagjast been pointed
out, this residual variation can be measured an® dsed as an indica-
tion as to the errors in estimate. \

It is obvious that if no relation has beef;\}'ound, the independent .
variable considered does not explain any‘(’j}‘the observed variation in
the dependent variable, and so none of the variation can be explained
ag due to, or associated with, the independent variable. If, as in the
case of the cube, the estimates all\apree exaetly with the actual values,
there are no residua! elements,*and the variation is perfectly ex-
plained. But between thedeMwo extremes lie the ecases of partial
explanation, where a portion of the variation can be explained by the
independent variable €ohsidered, and a portion cannot. In the auto-
mobile ease, part of he variation in stopping distance, but not all,
was associated with the speed; in the wheat case, part of the varia-
tion in protein gontent, but not all, could be estimated from variations
in the propérhion of vitreous kernels; and in the horse-feed case, part
of the vériation in feed fed, but not all, eould be ‘accounted for by
variations in number of days worked. In many problems it is of inter-
est\be’ determine what proportion of the variation in the dependent
variable can be explained by the particular independent variable con-
sidered, according to the relation observed,

Measurement of the relative jmportance of the relation between -
* two variables calls for a different type of statistical constant than the
standard error of estimate. The standard error of estimate simply
indicates the size of the residuals without regard to the amount of
variation in the dependent variable as first observed, If the standard
error of estimate for a cotton-yield problem, for example, were 50
pounds, that would be the standard error no matter whether the
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yield of eotton in the original cases varied only between 200 and 400
pounds or between 50 and 1,200. If the yields varied only between
200 and 400 pounds, and the- standard error was 50, practically all
the variation in the original yields would still be left in the residuals;
whereas if the yields varied between 200 and 1,200 and the standard
error was 50, only a very small portion of the original variation would
be left in the residuals, Yet the siandard error of estimate would
be of the same gize in both cases,

What is necded to show the relative importanee of the relationship
is some measure whieh shows what proportion of the original yaria-
ticn has been aceounted for, The amount of the variation in t.h\é ‘sepies
of estimated (V') values shows how wmuch variation hag been ac-
counted for. All that need be done is to compare thativariation
with the variation In the original series to determuze {what propor-
tion of the variation has been explained.

The standard of deviation may be employg for the purpose of
measuring the amount of variation. The actalvalues, ¥, shown in
Table 28, have a standard deviation of 702 The values estimated
from the linear regression equation, Y7, have'a smaller standard devia-
tion, 347, If we determine how largeithe latter is compared to the
former, we get o, /0, =3.47/7.92, art@.44, This is then a measure of
the importance of relationship.f]jeﬁween the two variables—or the
amount of correlation, as it istermed—acecording to the particular type
of curve for which the relationship was determined.

Linear relations—cbefficient of correlaion. Where the relationship
between the two variables is found or assumed to be a straight line,
the value of ¢, /oy d8 termed the coefficient of correlation. The symbol
7 is used to represent it. When values of ¥ are estimated from values of
X according ¥o“a straight-line equation, then the proportion of the
variation m%’ which is so accounted for is indicated by the notation
Tyas Whl(;h V1 read “the coefficient of correlation between ¥ and X.”

’Rhc oeflicient of correlation may therefore be defined

= (23.1)
Ty

This formula gives values of r identical with those given by the
more usual formula, equation (27), presented subsequently on page
148, a3 can be proved by simple algebra (see Note 3¢, Appendix 2).

The method of computing the coefficient of correlation which has
just been shown demonstrates that the coefficient is simply & measure
of how large the variation in the estimated values is, in proportien to

rggg
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the variation in the original values. The coefficient of correlation thus
measures the proportion of the variation in one variable which is
associated with another variable, and therefore iz a measure of the
relative importance of the conecomitance of variation in the two factors.

Curvilinear relations—index of correlation. In case the relation
has been determined as a curvilinear function instead of a straight
line, the ratio o,/ oy, is termed the inder of correlation, and is repre-
sented by the symbol py..

The index of cerrelation may therefore be approximately defined.as

Tyt O\
Byz = —- LX23.2)
Ty O

(A more exact value for the index of correlation is giyen in equation
{(29) on page 156.) ¢ >

Computing the index of correlation for the hdrée-feed case, op/ oy
= 3.86/7.92 = 0.49. From this figure, it Wo%d, appear that the cor-
relation is definitely higher for the curve than“for the straight line*

Characteristics of the measures of coue}:{ﬁon. Tt should be noted
that in the case of straight-line relations; 1fthe line has a positive slope,
50 that ag X increascs the values oft}” (the estimated values of ¥)
increase, the correlation is said to.be positive, and a plus sign is affixed
to the correlation coefficient, Sifnilarly, if the line has a negative slope,
g0 that as the values of X {the independent variable) are larger, the
values of ¥7 (the estimagtéd\values for the dependent variable} become
smaller, the correlation\is said to be negative, and a minus sign i3
affixed to the correlation coefficient. The coefficient of eorrelation thus
takes the samedgigh as the constant b of the corresponding linear
equation. In/the case of the correlation index, the ecurve may be
positive 11\0[10 portion and negative in another, so no sign is used,
and refefehce to the curve is necessary to indicate the nature of the
relationship. _
("I’ caze where the observed relation explains all the variation in
the’dependent variable, the estimated values will be identical with the
actual values. The standard deviation of ¥’ will therefore be exactly
as large as the standard deviation of ¥, and the ratio oy/ o, will equal
1.0. This is termed perfect correlation, and is indicated when p = 1.0,
or when r = + 1.0 or — 1.0.

4Tn some statistical texts, r,, is used to represent the corrclation observed in 3
given sample, and py. is used to represent the true correlation existing in the uni-
verse from which that sample was drawn, The student should not confuse that use
of the Greek rho, p, with the way it is used here. "
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At the other extreme of no relation, no variation ean be aceounted
for by the particular independent variable considered, and the estimated
values ¥’ are therefore all the same, being merely the average of Y. In
that case the standard deviation of the estimated values is zero, and the
ratio oy /ey = 0/6y = 0. The case of complete absence of correlation,
therefore, is indicated by values of 0 for either 7 or p.

The possible values of the coefficient of correlation therefore range
from 0 to + 1.0 or to — 1.0; whereas the values for the index of
correlation range from 0 to 1.0. Since most problems with which e\
investigator has to deal involve cases that are intermediate, where thee
is some but not perfect correlation, it is these intermediate caseg'ﬁrh\ich
are of most importance. The precise significance of differertvalues
of  and p will next be considered. N

Where both X and Y are assumed to be built up of gifiple elements
of equal variability, all of whieh are present in ¥ buf¥ome of which are
lacking in X, it can be proved mathematically that'r2 measures that
proportion of all the elements in ¥ which are &lsc present in X. TFor
that reason in cases where the dependenty ;Eriable iz known to be
causally related to the independent varieble, 72 may be called the
coefficient of determination. It may belsaid to measure the percentage
to whieh the variance in ¥ is determined by X, since it measures that
proportion of all the elements of-wiriance in ¥ which are also present
in X* The coefficient of detérmination, d,,, may be defined by the
equation ) xx\

Ny =12, (24.1)

Where some eleménts’are present in each variable which occur in the
other, the coeffieient of determination is the procduct of these joint pro-
portions. T{@,fﬂis, if 2/3 of the elements in X are the same as 2/3 of
the elements'in Y, then the coefficient of determination will be equal
to 4/9,o8"

Alhough the coefficient of correlation was the earliest measure used,
it caw'be seen that it may be misinterpreted. Thus if half the variance
in ¥ is direetly due to X, the eoefficient of correlation would be 0.707
(=+/%)}. Yet the coefficient of alienation ¢ is also 0.707. If instead
the coefficient of determination is used, when we know that that is 0.50,
we know at once that the coefficient of non-determination® is also

5 8ee Note 4, Appendix 2.
% 8ee Note 8, Appendix 2, for & fuller definition of these new terma.
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0.50; or if the determination is 0.60, the non-determination is 040,
The ecefficient of non-determination may be defined.

oy = 1— 72, (24.2)

Since this is the most direct and unequivocal way of stating the pro-
porticn of the variance in the dependent faetor which is associated
with the independent factor, it may be used in preference to the other
methods. )

Where curvilinear relations have been used in determining.fh# rela-
tionship, the term index of determination will be used to'denote the
value of p2, thus retaining the same relation to the index-of correlation
that the coefficient of determination hears to r, the cqe‘f,lfic‘lbnt of correla-
tion. The index of determination, d,.;.,; may be df.-fﬁnéd

dysizy = Pow ’ (24.3)
| oy

When an expression is used such as “Ferty per cent of the variance
in yield is due to differences in rainfa¥\#'it will be understood that it is
either the coefficient or the indek of determination which is being
stated. ' oY

Relation of the measures: of ‘correlation to the two regression lines.
Attention has heen callednin several previous chapters to the fact that
two regression lines cat\be fitted to any set of observations, These
are denoted by tha\%&'fo coefficients by, and b,, in the two equations

\& Y =ty + by X
and _
‘S M "X =g+ by, ¥
< '\\“ Y ¥

Mﬁﬁoﬁgh there are these two regression lines, there is only a single
~eveflicient of correlation for any one set of observations. In fact, the
\cbe&icient of correlation has certain definite relations to the two lines.
Tt indicates how closely the two lines approach one another. The
higher the correlation, the closer the two lines eome- together; the
lower the correlation, the farther they diverge. In perfect correla-
tion {r = 1) the two lines coincide, When there is no correlation

{r = 0} the two lines will be at right angles to one another,
This relationship is so exact that the value of the correlation coef .
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ficient ean be computed from the slopes of the two lines according ta the

equation
Tuz = V bys by (24 .4)

It follows from this equation that when r = 1, by, = —L, and therefore
iy

the two regression lines will coincide.?
Although there can be only a single coefficient of correlation for a

single set of observations, there can be two inderes of correlation.
This follows from the fact that the curve which expresses the relation
O\
Y =f(X) A
may be a eurve of quite a different type from that vghic%. expresses
the relation \\

X =)

Accordingly, the index of correlation, py,, whi,ch%easures the closeness
of correlation according to the first curve,may be quite different from
the index of correlation, p,, which medsturés the closeness according
to the second eurve. Only in the specislcase where all the observations
lie precisely along the curve, so th;aﬁ’.:}:’= 1, will the two indexes have
the same value, In that case jbwill also hold true that the curves
Y = f(X) and X = ¢(¥) will be identical with the coordinates re-
versed. 2N

There is only one’ éotrelation coefficient, r, however, It measures
the correlation according to both regression lines, Since r = r,; = 1y,
either notation eafi’be used interchangeably.

Adjustments \for number of observations. Where the number of
cases in thesmsainple is not very large, both the coefficient and index
of correla@“require certain adjustments before the values ecaleulated
from the\sample, as given by equations (23.1) and (23.2), can be
used:ffh’ ‘indicate the values which are most probably true for the
ubiverse from which that semple was drawn. Without correction,

T'This property of the two lines can be used to estimate graphically the close-
ness of correlation. When the two variahles, X and Y, are stated in terms of unit
standard deviation, X/oz and Y/oy, by dividing each cbservation by the standard
deviation of the geries, the coefficient of correlation will then be a precise mathe-
matical function of the angle between the two lines. By stating the variables in
this way, plotting them on a dot chart, and drawing in the two lines graphically, a
fairly close approximation to the coefficient can be obtained.
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the observed coefficient or index of correlation tends to cxceed the true
correlation.®

Denoting the adjusted constants as ¥y, and 7, the adjustment
formulas are:

n—1
Fa=1—(1—12) (n — 2) (25)
53:=1_(1-933:)(n_1) (26)
no—m ~

1i the value to the right of the first “1 —* in equation (25)\@1‘ (26)
exceeds unity, 0 must be taken for the value 7 or p. N\

In these equations, » and m have the same meaning ag in equations
(22.1) and (22.2), presented on page 133, The adjusted value 7 is the
value which most probably exists in the universe,{f, the correlation is
0.80 or better. In half the samples, the value Awil be as large as the
true value; and in half, i will be smaller than,be true value. If, how-
ever, the correlation is low, 0.60 or less, 7 is’a ‘somewhat more conserva-
tive estimate of the true correlation. PN

Applying the correction to the valué of ry. previously eomputed for
the horse problem, the eorrelation of grain fed with number of days
worked is found to be: N

™
*

L [LA047 (8 — 1)
riz'_l "..’\ 18 —2

7o = 085 "

The index of,doprelation is even more likely to be spuricusly high
when based op-g-¢mall number of cases than is the coefficient of corre-

& The vgzl\%'bf r caleulated from a sample is derived from the standard deviation
of the esiilated values oy and the standard deviation of the dependent variable oy.
It wagmtted in Chapter 2 that when standard deviations are computed from a small
sginple;'they tend fo be less than the true standard deviation of the universe, and this
applies to ¢y, At the same time, ¢y is defermined from a limited numbser of ebserva-
tions. It was already pointed out that a straight line would exactly fit any two
observations with no residuals at all. When a straight line is fitted to ten observa-
tiong, there are only eight “degrees of freedom™ in determining the values a and b,
as the “freedom” of two of these ubservations is used up in the determination. As
& consequence of these conditions, the o tends to be larger than it should he, and oy
tends to be too small. Hence the quotient, oyr/o, tends to be too large, on the
average. Also, since oy tends to be tgo large, o, tends to be too small, and hence

the observed standard error of éstimate also needs correction, ss provided in egua-
tions (21.1) to (22.2),

= 0.1432
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lation and is even more in need of the adjustment, indicated by
equation (26).°

Computing the -index of correlation for the horse-feed problem,
with the corrections shown in equation (26):

3.862)
(18 — 1) (1 T 7022

] — _ =
Fre =1 T 0.1389

Bys = 0.37 N

After adjusting, we find that in this case the index of correlation is
almost the same as the coefficient, agreeing with the conclusiot\shown
by the two standard errors of estimate. Just as with the standard
errors, 5o it is with the correlation—not unless the indéx of correla-
tion is still definitely higher than the coefficient, afted they have been
adjusted by formulas (25) and (26), can it bé said that there is
definite indication of eurvilinear ecorrelation rather than of linear.

It should be noted that in any case th{aﬁjﬁstment to r or p is
small compared with its own standard exferi—that is, the value given
by the sample may miss the true valueig® the universe by a margin
much larger than the difference betw®en the observed value and the
adjusted value. Chapter 18 diselisses methods of estimating the
probable range of such departutgs of the observed correlation from
the true. Even so, the averagésvalue from a series of samples always
tends to have the bias m’él}tioned, and it is worth eliminating this
average bias as far as\g\sééible, even if the adjusted value from an
individual sample ig(still subject to a considerable standard error of
its own, ¥/

The reliability-of the regression Hne or curve and of the measures
of correlation. ) Chapter 2 shows how a series of samples drawn from
the same.'\ioh}i'erse would yield varying estimates of the true average
in t-hgt, \ﬁ;ﬁverse. It also presented methods of estimating how far the
) 'I:he adjusted index of eorrelation p has the same interpretation as the adjusted
coefficient of eorrelation—half of the samples will give velues of 5 which will not
exceed the true value of p in the universe from which the sample was drawn.

Just, as the & and b of the linear equation eliminate two degrees of freedom, &
eurve representing three constants (or more) can be passed exactly through three
observations {or more) and so may eliminate three {or more) degrees of freedom.
There is therefore even more tendeney for ¢ to be spuriously high than for r, and the

correction is even more needed. . .
10 See Figure F of Appendix 3 for a zraphic method of computing adjusted

coefficients or indexes of correlation from the unadjusted values,
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average from a single sample might miss the true average in the uni-
verse. In exactly the same way, if regression lines or curves are de-
termined for a seriez of samples from the same universe, they will
yield regressions which vary among themselves. Similarly, the coef-
ficients or indexes of correlation and the standard errors of estimate
will vary from sample to sample. Standard errors of each of these
measures are available. They provide estimatcs of the range from
the true values in the universe within which two-thirds of the values
from such samples will fall and of the wider range within which larger
proportions of the samples will fall. These measures of reliability for
the sample results are much more complicated, bhoth in computatlon
and in interpretation, than the standard error of an averhpe! Ac-
cordingly, their presentation is deferred to a later chapter, tChapter 18).
In addition, the special problem of the reliability af an individual
estimate for an individual new observation, from.}the results shown
by a sample, is treated in a separate chaptex\[€hapter 19). The
methods pgiven in the present chapter and Ch@pter 8 are sufficient for
determining the correlation and regression @éshown in the individual
sqmple, Before a student or research morker uses the results of the
sample to draw more general conclusi@né“as to the relations which hold
true in other samples or in thie uniy€érse as a whole, or before he makes
estimates for new observations, he* should master these later chapters
and should apply the checks. and limitations set forth there in statmg
his general tonclusions or dnvmaking his estimates.

Summary. This ¢ lgpter has pointed out that the closeness of
relation between twe, variables may be measured either by the absc-
Tute closeness wﬂ;h svhich values of one may be estimated from known
values of the otfler”or on the basis of the proportion of the variation
in one which. Ca}l be explained by, or estimated from, the accompany-
ing values}).f the other. The absolute accuracy of estimate is measured
by the, standard error of estimate, which indicates the reliability of
va]ueS\ of the dependent, variable estimated from observed values of
the independent value,

"The relative closeness of the relation is best measured by the coeffi-
cient of determination, in the case of linear relationship, or by the
index of determination, in the case of curvilinear relationship. These
measures show the proportion of the variance in the dependent vari-
able which is associated with differences in the other variable. In
the case of variables causally related, they measure the proportion of
the variance in one which can be said to be due to the other.
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The best methods of computing the various measures of corre-
lation will be shown in the next chapter; the methods used in this
chapter arc designed rather to show the significance of the measures
themselves.

This chapter has also called attention to the fact that the measures
of correlation obtained from a sample will vary from the true facts
of the universe, has referred to later chapters where standard errors
for estimating such wvariation are discussed, and has warned against
drawing general conclusions or making new estimates from a single
sample unless the precautions described in these subsequent chapters

are observed, A o
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CHAPTER 8

PRACTICAL METHODS FOR WORKING TWO-VARIABLE
CORRELATION PROBLEMS

Terms to be used. The preceding discussion has developedthe
means by which values of one variable may be estimated froth' the
values of another, according to the functional relation SllO}‘E’Ii"ih a sob
of paired ohservations. Simple correlation involves only tliemeans for
making such estimates, and for measuring how closelydhgse estimates
conform to, and account for, the original variation{in the variable
which is being estimated, for the given set of obseryations. :

The regression line is used, in statistical tembinology, to designate

the straight line used to estimate one varia\blg\ rom another by means

of the equation Y =a+ % >
This equation is termed the linear .rpgjfreésion equation; and the coeffi-
cient b, which shows how many units (or fractional parts) ¥ changes
for each unit change in X, is tetmed the coefiicient of regression.

Where a eurvilinear fupetion has been determined, either by the
use of an equation or by graphic methods, the corresponding curve is
similarly designated a&the regression curve. Rither the mathematical
equation or, if none*has been computed, the expression

O Y = f(X)

where the syr\i)b\ol J(X) stands for the relation shown by the graphic
curve, is jetwied the regression equation.

. Thex toefficient of correlation and the index of correlation have
both¢ ‘péén defined as the ratio of the standard deviation of the ecsti-
mated values of ¥ to the standard deviation of the actual values,
whereas the standard error of estimate has been defined as the stand-
ard deviation of the residuals from the estimates so made. In the
case of linear relations, however, the coefficient of correlation and
the standard error of estimate can both be computed directly from
the same values as were employed in computing the constants of the
regression equation. This will be illustrated by the praetieal example
which follows.

146
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Working out a linear correlation. As was illustrated in Chapter
3, pages 64 to 71, the values for a and b of the regression equation can
be determined for any two variables, X and ¥, between which i may be
desired to determine the relation, by working out the values, A, M,
2X? and 3(XY), and then substituting them in the appropriate equa-
tions. In order to compute directly the coefficient of correlation, Tour
and the standard error of estimate, 8., it is necessary only to compute
in addition the value Y2 and substitute it in appropriate formulas.
The data given in Table 31 illustrate the necessary operations,

N\
TABLE 31 (\))
e S N
Comprrine TBE Varoes NEEDED 10 DETERMINE LiNnir REGRESSION aND
CorreLaTioN COEFFICIENTS N
i AN
Irrigation water Yield of Pima, \J
applied per acre * | cotfon per acre * X2 N XY y?
(x) (r) 7\
ra’
=S
Feet Units of ten pounds | /NN
1.8 26 A 824 46.8 676
1.9 37 o1 sl 70.3 1,360
2.5 45 & 38 6.25 112.5 2,025
1.4 1805 1.96 22.4 256
1.3 A 1.69 11.7 81
2.1 OV 4.41 92.4 1,036
2.3 A 5.29 87.4 1,444
1.5 S 28 2.25 42.0 784
1.5 N 23 2.25 3.5 5290
1.2, )" 18 1.44 21.6 324
1.30) 22 1.69 28.6 484
148 18 3.24 32.4 324
N 40 12.25 140.0 1,600
AN'3.5 65 12.25 227.5 4,225
Total.)  27.6 429 | 6182 | 901 | 16,087
\J
Mean. 1.97 30.64

*From Jamea C. Muir and G. E. P, Bmith, The use and duty of water in the Balt River Valley,
Agriculturel Experiment Stalion Bulletin 120, University of Arizona, 1827. ATl the plots were on
the same type of so0il, Maricopa sandy loam.

The computations shown in this table—squaring both X and ¥, cal-
culating the product XY, summing both X, ¥, and the three columns
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of extensions, and dividing the first two sums by the number of caseg to
give the mean of X and Y—provide all the basic data necessary.! The
values ¢ and b for the regression equation may next be computed by
substituting these extensions in equations (9) and (10}, which were
used previously in Chapter 5, page 66.
y _ ZXY) — MM, _ 9701 — 14(197)(30.64)
X — n(M,)? $1.82 — 14(1.97%
_125.050
T 7.4874
a ="M, — bM, = 30.64 — 16.701(1.97) = — 2.261 .
The regression line, Y = @ + bX, therefore is for thig cé@%
Y =—221+16701X (D
The unadjusted coefficient of correlation, r.,, mag“now be computed
from the following new formula: AN
SXY) — nMM, 0O
VI[E(X?) — n MY [z(Yﬂ) — M)
970.1 — 14(’1 97)(30 64)
VI61.82 — 14(1.997 (16,057 — 14(30.64)7]

It should be noticed that t.he numerator of this fraection is the same as
that in the equation f Q and that half of the denominator is the same,
except that 1t is under the radical sign.

Comparison o equatwns (9) and {27) with equatien (5) for the
standard devm{on

= 16.701 N\

(@7)

Yoy =

\Y 2
\ \ o = Z{X*%) _
n
shgywéﬁhat they may be written more simply
Y S(XY) —
byz = ( ) 2anMy or 2(223}) (271)
no, ne’
oy = 2(XY) — nM.M, - Z(xy) (27.2)
Ndz 0y Ne L0y

1Where the number of cases to be handled is large, various short euts may be
used te reduce the volume of computation required in computing the sums of ex-
tensions £X2, XX Y,and Z¥2, The use of these short cuts is developed i in Appen-
dix 1, pages 455 to 463,
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The second form, in each ease, uses the notation Z(zy) for (XY) —
n(M,M,) as discussed on page 662 The forms shown in eqguations
{9), (10), and (27), however, are the ones ordinarily used in actual
computation, and should be kept ¢learly in mind.

Onee 7., has been computed, the value adjusted for the number of
cases can then be obtained by equation (25).

fiy=1_(lHrﬁy)(ﬂ—1)

n -2 ~N
For the present problem, that becomes A\
, 1~ (0817 (14 ~ 1) O
r;,, =1 TR = 06939\
Fay = 0.833 P
Knowing 7., we may next compute the st,anc}ard' error of estimate
by the following equation: { N
O ) N
B = \/_1:1_ ) - (28)

_ > 3

B \/16,057 — 14(30.642)
- 18

=V 33:65? 8.28
G

Binee this equatioh, includes 7, already adjusted for the number of
observations, noyfUrther adjustment is necessary. The standard error
computed by'eéué,t-ionl(%) is identieal with that obtained by equa-
tion (21.1), 61,(21.2), given in the previous chapter.

As noted" earlier, though 1,y = 7ys, bay is not the same as by,. The
former Yegression, showing the change in X for each unit change in ¥
(thaj;}s; regarding the dependent factor as the independent factor
inistead), is obtained by modifying equation (9) to the following form:®

y XY —nlf,M,
T UR(VE) — n(My)?

[T — (0.833)7)

2 The value of 2(zy) is sometimes called the product moment.

# When the correlation is perfect, 50 that .y == 1, the two regression coefficients
will have the definite relation by, =1/bs. Under these conditions the regression
lines will be identical, no matter which variable is regarded as the independent
variable and which as the dependent.
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The new regression coefficient, b, shows the average change in
water applied with each additional unit (ten pounds) of cotion -
harvested. With the quantity of water subject to human control, as
in this case, this relation appears to have little meaning. However,
if it ig degired to chart it on Figure 22 along with the other regression
line, it can be charted according to the linear regression equation

X = tzy + bny

The value of the new a can be computed by restating equation (lQ) in
the form

M T bxyM "\:\
Equation (28) eompletes the computation of all the values needed *
except the coefficient of determination, d,, which is snnp‘ly 72, That
BT} _ ,\‘
dey = 72, = (0.833)% = 0.804V

Intérpreting the results of a linear correﬁtlon The next step is
to take the several constants which have &en computed and sce what
they mean.

The coefficient of regression of Y on X b,y = 16.70, shows that on
the average the acre yield of cotfon increages 16.7 ten-pound units,
167 pounds, for each additiona}‘acre-foot of water applied. The con-
stant a shows that with no&ater applied, a yield of — 2.26 ten-pound
units, — 22.6 pounds, le”le§s than no cotton at all, might be expected.
Since these results ar‘a)aéjsed on observations extending from 1.2 acre-
feet of water to 3.8, )the relations shown by the regression line do not
necessarily holds beyond those limits, and it is not certain what the yield
would be whe’hs Tio water is applied, Extrapolating the regression line
to that poifit)is only a guess.

Tl{e,fe\gression equation

.\' 3

~O Y =— 226 4 16.7(X)
o/

Yield = — 22.6 + 167 (feet of water)

then gives the yields of cotton estimated as most likely to be obtained
from the quantity of water applied within the limits of 1.2 to 3.5 feet.
Figure 22 shows how these estimated values, along the regression line,
compare with the actual vields observed.

4+ Except alzo the calculation of measures of relisbility, as explained in Chap-
ters 18 and 19.
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The standard error of estimate, 8.28 ten-pound units or 82.8 pounds,
shows that the (adjusted) standard deviation of the differences be-
tween the actual and the estimated values is 82.8 pounds of cotton.
Two lines have been drawn in Figure 22, at 82.8 pounds above and
below the regression line. It will be seen that of the 14 cases, 9
fell between these two lines, or in the zone within one standard error on
either side of the regression line,

Yield of cotto
nten th p
units - N\
Y

60

50
40

Ky

20 |- / o
.« AN “Actual vatues of

s - a sEstimated wolues Y’
1o |7

~

PRNY
0 ~

N 3
&5 Water applied, in acre-feet

4

Fie. 22. Relation obyield of cotton to irrigation water applied; estimated yields
from a linear reg’neésién and zone of probzble yields indicated by the standard
\M error of estimate,

N

The ‘(icf;eﬁcient of correlation, 7, = 0.83, and the coefficient of
detg;:m’iﬁation, day = 0.69, show that about 69 per cent of the variance
in‘the yield of this crop in this ares, on the farms from which these
records were obtained, could be accounted for by the differences in the
quantity of water used in irrigation. Since this leaves only 31 per cent
of the variance to be accounted for by all other f actors, it would appear
that the quantity of water applied (or other factors associated with it)
wag the most important factor which was associated with the yield of
cotton on these farms and on this type of soil.

The fact that 69 per cent of the variance in yield ean be explained
by corresponding differences in the quantity of water applied does
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not in itzelf mean that the differences in irrigation caused the differ-
ences in yield, For example, it might be possible that the quantity
of water applied was regulated to conform to the fertility of the land
and that the differences in yield were really due to the differences in
fertility., The statistical measure merely tells how closely the vari-
ance in one variable was associated with variance in the other; -
whether that association is due to, or can be taken as cvidence of;
cause-and-effect relation is another matter, and is outside the scope of
the statistical analysis. (For more extended diseussion of this peint,
see the last two chapters of this book.) .

Working out a curvilinear correlation, The next sféphis to
consider whether the straight line is adequate to describeth:e\ way that
the yield increases ag more water is applied, or whetherdd curve had
better be employed. {This step can be taken before any of the linear
results are worked out, and, if a curve Is decided® on, the previous
work can be skipped entirely, if desired.)

Before fitting the curve, we must conmdél‘ what type of curve
it is logical to expect. In most agrieulural production problems,
diminishing returns are experienced.” That is, the application of sue-
eessive increments of fertilizer or other productive aid on the same
areag will be expected to produce; a smaller and smaller inerease in
the product. Also, it is known! 'that if too much of some factors are
applied, the result may be tg" produce a decline in output. The decline
after the point of optm;em\apphcatmn is reached may be gradual, or
it may be sudden, owing\to a toxic effect of too much of one substance
upon the plant or amimal, These considerations would lead us to ex-
pect & curve w1th\the following charaeteristies:

1. It shoul&‘ rise steeply at first, and then less and less sharply’
& maximum is reached.
2. It mlght gshow 5 decline after the maximum 1s reached either
¢“gradual or sharp. _
< 3 It would have only the single point of inflection (change _of..
direction) at the optimum application. '

These are the conditions we shall apply in fitting the curve.

Examining Figure 22 more closely, we see that, in the range up
to 1.8 acre-feel of water, the actual yields lie below the regression’
line four times, and ahove four times' in the range from 1.9 to 3 acre-

5 William J. Spillman, The Law of Diminishing Returns, World Book Co.,
Yonkers-on-the-Hugson, New York, and Chicago, 1924.
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feet, the actual yields lie above in all four observations: and above 3
acre-feet the one yield helow the line is much farther below than is the
one.above. These facts suggest that a curve convex from above, giving
lower estimated yields than the straight line for the lowest and highest
appllcatlons of water and higher estimated yields for the intermediate
apphcatlons, would more accurately represent the relations in this
case. (The number of observations is far too low to serve as a very
accurate indication of the shape of the eurve, but it will serve at
least as a simple illustration of the way the whole problem may“be
worked through.)

The next step is to group the observations according to_ the\’aiue
of X (the quantity of water) and average both X and Y,swater and
vield. In view of this small number of observations," tather large
groups are taken; were more cases available, the groups might be
made narrower. Q)

TABLE 32

ComroTarioNn OF (GROUP AVERAGES TO Imrcﬂﬁhimnmssmnr Corve—
’ Corron EXAMPLE

X (water} 1.5 X {water) 2.0 X (water) 3.0
X (water) 110 1.4 61.9 N t02.9 t0 3.9
X Y x |\NY X Y X Y
X -
1.4 | 18 A3 | 26 2.5 | 45 3.5 | 40
1.3 1 9 _ (19 | 37 21 | 4 3.5 | 85
12 | 18N 1.5 | 28 2.3 | 3
1.3 | 220 15 | 23
2\ 1.8 18
’\u
7N
Sums... 52 65 8.5 |132 6.9 | 127 7.0 | 105
Mewtsy> 1.3 | 16.25 | 1.7 | 26.4 | 2.3 | 42.33| 3.5 | 52.5

3

These averages are then plotted, as shown in Figure 23, an irregu-
lar line dotted in connecting them and as smooth a curve as possible
which fulfills the stated conditions drawn in freehand through the
averages and the broken line, just as discussed in pages 105 to 110,
Chapter 6. This then gives the regression ecurve. It is seen to fit
the data well, and yet to fulfill the logical conditions stated. The
point of maximum yield, however, apparently lies beyond the limit
of the cbservations,
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Next the estimated yields for each different application of water
are read off from this curve, and the difference between the actual
and the estimated yields is determined. These residuals are then
squared to determine their standard deviation. In ease the linear
correlation has not been previously worked, the yields, or ¥ values, are
also squared as shown, so as to determine their standard deviation,
and so give the basis for measuring the amount of correlation,

Yield of ~
cotton 7
in ten-pound O
units R \J)
Y O
50
&0
30 f_ﬁf‘;:; ; r!l}curye
20 s
P \ " = Aclual values of ¥
10— V,’ _ > S ’&ﬁma:’ed values, ¥ 3
S < °Group averoges
AN
+ &)
o ¢. &\
TN 2 3 %

X-Water opplied, in acee fert

Fra. 23. Relatio/%igf vield of cotton to irrigation water applied; estimated yields
from a curtﬂi}{e@ regression; and zone of probable yields as indicated by the
\ ) standard error of estimate.
O\ '

T}{é.'éum of the Y” values is slightly smaller than the sum of
t%i? ‘values, and the mean of the 2 values is therefore not exactly
zeto, but 0.264. That indicates that the eurve shown in Figure 23
should be shifted up 0.264 unit, or 2.64 pounds, to make the esti-
mated and actual averages agree® Representing this eurve by f(X),

¢ In problems with many ohservations, the sum of the ¥ values and of the ¥”
values may be determined separately for the several different portions of the curve,
1o eee if its pesition should be shifted in one portion and not in another, This
process cannot be carried too far, however, for if the divisions are made too sinall
the effect will be to make the curve pess through each successive group average,
without smoothing out the irregularities into a continuous function.
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the regression equation for the curvilinear correlation may therefore
be written:

Y=k+5X)
Y =264 + f(X)
TABLE 33

ComrPuTATION OF RESIDUALS AND STAKDARD DEVIATION FOR CurviLINEAR
REsrEssioN—CoTroN ExAMPLE

2N
. Yield, in | Yield estimated " \
Water ten-pound | from X, in ten- Y_,,Y ' "y (N3t

per acre, X units, ¥ | pound units, ¥’ ") O
1.8 26 29.0 - 3.0 90Q 676
1.9 37 31.0 6.0 ~36,00 1,369
2.5 45 42.8 2.2 {\\4.84 2,025
1.4 16 19.2 — 3.2 1024 256
1.3 9 16.8- - 787 60.84 81
2.1 44 35.2 88" 77.44 1,036
2.3 38 39.5 AN 2.25 1,444
1.5 28 21.9 6.1 37.21 784
1.5 23 2.9 BN 11 1.21 528
1.2 18 142 WS 3.8 14.44 324
1.3 22 16.8 4 5.2 27.04 484
1.8 18 29,0 -11.0 121.00 324
3.5 40 54,0 ~14.0 196.00 1,600
3.5 65 ,{"34.0 1.0 121.00 4225

Q-
Sums...... 429 1 425.3 + 3.7 718.51 16,057

The values'ai the foot of Table 33 now give the constants necessary
to measurxﬁh‘e tloseness of the correlation. First the standard devia-
tions of X’ d of 2" are computed, using the formula

7 | - M
O ~\‘ay - \fm—n”L— 14.44

\/z(z”)ﬂ — n(M%) \/718.51 — 14(0.264%)
o-z,, - =3

= 7.1
1 14 7.16
Then, by equation (22.2),
TN (N DN S ¢ ) -
tSy Sy == 0 (n — m) (7.16 ) 14 i 3 65.23

Syresy = 8.07
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Here 3 is used for the value of m, since it is judged that a parabolic
equation of type (a), with 3 constants, would be adequate to reproduce
the freehand curve.

The standard error of estimate for the graphic regression curve i
thus 8.07 ten-pound units, or 80.7 pounds. This is 2.1 pounds smaller
than the corresponding value in the case of the linear gorrelation, in-
dicating how much more closely the curve fits the data than does the
straight line, even after allowing for its greater flexibility. In Figure
93 two dotted lines have been drawn in, each 80.7 pounds away from
the regression curve, indicating the zone of estimate within ywhith
approximately two-thirds of the cases fall (10 out of 14 in this instance)
and within which two-thirds of the actual yields may be expeéted to fall
if new estimates of yield are made from the water applied for addi-
tional cases drawn from the same universe. (Note algo:the diseussion,
in Chapters 18 and 19, of the reliability of sueh{ &stimates.)

The index of correlation, 5., may next be comphted by substituting
the two standard deviations in formula (29): \\ ’

2 \
_ o\ {1
P = 1= 2) (n"— m) (@)

SPXAN

This formula includes the corféetions for the number of variables
and constants. It should alway® be used in caleulating the mdex of
correlation where the curvelhas been determined frechand, as in this
cage, since it gives & o\l‘a Jaccurate measure of the correlation than
does equation (23.2)y, shown previously.

Where the equsiticfl of the eurve has been determined by mathe-
matical means, the Standard error of estimate and the index of corre-
lation may /belcomputed without working out the estimates and
residuais_\f%&“each of the individual cases. These methods will be
described\subsequently.?

Ipthe example given, the index of correlation works out

7.16)° 14 — 1
..2zﬁ1_[_( ][ ]ﬁ  oans —
7 el (] R 0.7005

B = 0.842

Since the index of determination is simply ph, it is 71.0 per cent.
Comparing these resulis with those obtained by linear correlation the
index of determination of 71.0 per cent compares with the coefficient of

7 8ee page 412, Chapter 22,
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determination of 69.4 per cent. Apparently taking into account the
curvilinear nature of the relations has increased the proportion of the
variance in yield accounted for by differences in water application by
1.6 per cent of the total variance in the yield.? (Only the measures of
determination can be directly compared in this way. If the coefficient
of correlation, 0.833, were subtracted from the index of correlation,
0.842, that would give an incorreet idea of the importance of taking
account of the curvilinear nature of the relation,)

Interpreting the results of curvilinear correlation. The index
of determination and the accompanying standard error of estimate
have heen interpreted for the curve in much the same manner g were
the coefficient of determination and the standard error of estitate for
the straight line. In the case of the regression curve itself; however,
a somewhat different method of presentation may bgybest, since a
mathematical equation expressing the relation hasnet been computed.

TABLE 34 >

Yienp oF Prua Corron, wrre DIFFERENT Aprmm'rfmﬂ's OF IrriGaTION WATER, ON
Maricors Sawpy Loam SBors m tos SA‘U;":B.“}ER VALLEY, ARIZORA, IN
1013, 1914, axp 1615

Frrigation water &\\© Average yield of
applied 3% cotton lint

Acg-g‘-fg}t Pounds per acre
125 156
\ .80 222
7o 1.75 283
AN 2.00 336
9\ 2.26 385
N\ 2.50 - 431

N

Tho regression curve just worked out for the cotton problem, for
efanaple, may be presented either as a curve showing graphically the
yield to be expected for various applications of water, as is illus-
trated in Figure 23, or as a table showing the same thing, as in Table
34. In both instances the constant which has been determined from
'the average of 2 is added to the values read from the curve in Figure
23, f(X), so as to give the final estimates which would be made by
taking into account this slight shift in the position of the curve.

8 See Chapter 18, page 319, for tests as to whether this difference is large enough
to be significant,
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Similar presentation could be given the regression line in cases of
linear correlation, if desired, but then the chart would show only a
straight line and the table would show exactly the same changes in
the dependent variable for each. successive uniform change in the
independent variable. In preparing the table, the relation is shown
only for that range of water application within which the bulk of the
observations fall. Similarly, only this range should be shown by the
golid line in the chart; & dotted line might be used to indicate the
relations beyond that up to the extremes observed. Neither the re-
gression ling nor eurve should, ordinarily, be carried beyend the
limits of the observations on which it was based. Also, befo\i‘é@eneral
conclusions are drawn as to the application of the resulte to cases
other than those ineluded in the sample (as, in this ip&tanee, to other
fields in the same area}, the standard errors set fg@h'in Chapters 18
and 19 should be caleulated and included in theJnterpretation.

Summary. This chapter has illustrated the‘way In which corre-
lation analysiz may be applied to a speei ’c.\problem, the manner in
" which linear and curvilinear regressiohs)may be determined most
gimply, and the way in which they may be interpreted. In addition,
the simplest manner of comput-ing'jtﬁe standard error of estimate and
the coefficient and the index of ¢errelation have been illustrated, and
their significance has been Yriefly discussed.

N\
L 3

\'\ \v



CHAPTER 9

THREE MEASURES OF CORRELATION—THE MEANIKG
AND USE FOR EACH ~

So many different statistical coefficients have been introdﬁe;qﬂ in
the discussion of correlation that there may be some confu;sibﬁ SIMONLE
them ag to the meaning and use of the different ccefficients. Par-
ticularly in Iinear correlation, there are three constafits which sum-
marize nearly all that a correlation analysis revealSTE\

First, the standard error of estimate shows<how nearly the esti-
mated values agree with the values actuallyoob%rved for the variable
being estimated. This coefficient is stated\in"the same units as the
original dependent variable, and its size ¢an*be compared directly with
those values. R\ 3 _

Second, the coefficient of determinhtion (r2) shows what propor-
tion of the variance in the val;ge's’ of the dependent variable can be
explained by, or estimated from, the concomitant variation in the
values of the independent aiariable.” Since this coefficient is a ratio, it
is a “pure number”; th{(is; it iz an arbitrary mathematical measure,
whose values fall within' a certain limited range, and it ean be com-
pared only with @ther constants like itself, derived from similar
problems, A\

Finally, #hé coefficient of regression measures the slope of the
regressio;yk\é; that is, it shows the average number of units increase
or decreasé in the dependent variable which occur with each increase
of ..a:s:j)‘e'ciﬁed unit in the independent variable. Tts exaet size thus
dépends not only on the relation between the variables but also on the
units in which each is stated. It can be reduced to another form,
however, by stating each of the variables in units of their own indi-
vidual standard deviation. In thiz form it has been termed 8 or
the “beta” coefficient 2 The relation between beta and the coefficient

1 These statements are all subject to the error limitations set forth Iater, in

Chapters 18 and 19,
2 See Truman Kelley, Statistical Method, p, 282, The Maemillan Co., New York,
1924, _
159
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of regression may be indicated by stating the regression equation in
hoth ways:
Y =0+ b.X

Y X
oy Ox
Ty
et () .
_ ¥ N\

M, M,
=m+ﬁy:c_'_'_‘ M/

Gy Oz

Stated in this way, 8 for the cotton-yield probleml i 0 845. That
is, for each increase of one standard deviation. tO 73 acre-foot of
water) in X, the yield of cotton increased 0845 of one standard
deviation. Sinee the standard deviation of X Was 144.3 pounds, that
is equal to 121.9 pounds of cotton for eabh 0 73 acre-foot of water.
This is at the rate of 167 pounds of dotton for each foot of water,
which is the same thing as was showm, by the coeffiecient of regression.
However, for eomparisons betwem problems where the standard de-
viations are much different, thes “beta” coefficient may have value.
It is evident that in simple."correlation the value of beta is the same
a8 that of n. o)

Relation of the different coefficients to each other. Even though
each of the three coefficients mensures certain aspects of the relation
between variables,/it does not follow that all three coefficients will
vary togetheQr ot that a problem which shows a high ecoefficient of
determma‘t{on will also show a high regression coefficient or a low
standard error of estimate. That is because they measure different
aspeetsrof the relation.

{ “The particular usefulness of each of the three different groups
of"correlation measures is illustrated in Figure 24, which shows three
sets of simple relationships, with hypothetical data.

Here the regression coefficient is smaller in A than B. In A an
additional inch of rain causes an average increase of 2.5 bushels in
yield, as compared with an increase of 3.1 bushels in B. But in ease
A, a considerable part of the variation in yield is apparently due to
rainfall, as shown by the high eorrelation (r = 0.83) and the small
size of the standard error of estimate (2.2 bushels); whereas in case
B, factors other than rainfall apparently cause most of the differ-
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cnees in yield, as indicated by the lower correlation (r = 0.71) and
the Iarger standard error of estimate (3.8 bushels), In terms of deter-
mination apparently about 69 per cent of the differences in yield are
related to differences in rainfall in the first ease, and only about 50
per cent in the second.

In comparizon with A and B, case € has much less variable yields,
ranging from only about 8 bushels to 12 bushels, compared with a
range of 8 to 21 in ease A and 0 to 20 in case B. Only a small part
(22 per cent) of the varistion in yields is associated with rainfal\f
differences, as indicated by the low correlation (0.47). An jrcrease
of 1 inch in rainfall apparently causes only 0.5 bushel inCrease in
yield. Yet in spite of this low relation, it is possible to esti}pdte vields
more accurately, given the rainfall, in this case than in either of the

S
® ’
Y ol r-_r::: s OO Vield ?r-a.;'.'sw-ys
io_%rd byen 25 S22, Y%d burdl, Far2s <:. 20 = Fial
L - - \
10 % * 1. / ’.". - 10 ks : -
oty
o} 1 i ] o “t} I | [o] l l 1
8 8 10 - D | 10 6 .8 10
Rainfall A Rainfall Rainfall
Fi. 24. Hypothetiral set;: bf data, illustrating three types of correlation
coeficients.

N

other two, as is\shown by the standard error of estimate of 1.15
bushels as com’@ﬁi‘ed to 2.2 bushels for A and 8.1 for B. The original
variation h:("}r\lélds is so slight in case C that even the small relation
shown torainfall is enough to make it possible to estimate yields more
accupately than in either of the other cases’

“"hese three cases illustrate the relative place of each of the three
types of correlation measure. Case B shows the greatest change in
vield for a given change in rainfall (the regression measure}; case
A shows the highest proportion of differences in yields accounted for
by rainfall (the correlation or determination measure) ; and case €
shows the greatest accuracy of estimate {(the error of estimate meas-

2Tn ealeulating the measures for these illustrative cases, the correatiorts for
numbers of cases have been ignored, as they would not have affected the particular

points these examples were set up to illusirate,
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ure}. Which of these measures should have most attention in a par-
ticular investigation depends upon the phase of the invegtipation which
is most important: the amount of change (regression); the propor-
tionate importance (correlation) ; or the aeccuracy of estimate (standard
error}. All have their place, and none should be entirely overlooked
or ignored.
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CHAPTER 10

DETERMINING THE WAY ONE VARIABLE CHANGES WHEN
TWO OR MORE OTHER VARIABLES CHANGE: (1) BY
SUCCESSIVE ELIMINATION Q.

L\

The Problem of Multiple Relations R

N\

The relations studied up to this point have all been of the type
where the differences in one variable were consideredsas. due to, or
associated with, the differences in one other val'iable}:,"But in many
types of problems the differences in one variable taay be due to &
number of other variables, all acting at the'.@me time, Thus the
differences in the yield of corn from year 1§ year are the combined
result of differences in rainfall, temperature, winds, and sunshine,
month by month or even week by we'e'k't;hrough the growing season.
The premiums or discounts at whighi~different lots of wheat sell on
the same day vary with the protéin confent, the weight per bushel,
the amount of dockage or foreign matter, and the moisture content.
The speed with which a moforist will react to a dangerous situation
may vary with his keenness of sight, his speed of nervous reaction, his
intelligence, and his flsja}%liarity with such situations. The price at
which sugar sells ab wholesale may depend upon the produetion of
that season, the eirryover from the previous season, the general level
of prices, and .théi)rosperity of consumers. The weight of a child will
vary with its‘age, height, and sex. The volume of a given weight of
gas varigd with the temperature and the harometrie pressure.

The\ physicist and the biologist use laboratory methods to deal
Wit}i\pfoblems of compound or multiple relationship. Under laboratory
conditions all the variables except the one whose effect is being studied
may be held constant, and the effect determined of differences in
the one remaining varying factor upon the dependent variable, while
effects of differences in the other variables are thus eliminated. In
the ease of & gas, for example, the temperature may be held consta.t
while the volume at different barometric pressures is determincd
experimentally, and then the pressure held constant while the volume
at different temperatures is determined. For many of the problems

163
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with which the statistician has to deal, however, such laboratory
controls cannot be used. Rainfall and temperature and sunshine vary
constantly, and only their combined effect upon crop yiclds can be
noted. Economic conditions are constantly shifting, and only the
total result of all the factors in the existing situation can be measured
at any time. And so on through many other types of multiple rela-
tions similar to those mentioned—the statistician has to deal with facts
arising from the complex world about him, and frequently has but
little opportunity to utilize laboratory checks or artificial controlgs

Theoretical example. Where a dependent variable is inflirenced
not only by a single independent variable, as in the relation 8.8 to X,
but also by two or more independent variables, we can_represent the
relation symbolically by the equation N

Xy =a+bXs + bsXa + . . b 20.1)

Here X, represents the dependent variable, yand Xy, X3 ... %
represent the several independent variables. ¢

The meaning of the several constants\in this equation and the way
in which it may be inferpreted geon}eti'iéally can be shown by making
up a simple example. RN )

Let us assume that in & ne¥rrigation project the farms are all
alike in quality of land and Xinds of buildings and that the price ab
which each one is sold to the settlers is computed as follows:

s\ J
Buildings, $1,000.per farm o
Irrigated land, $100 per acre :

Range (m?n-’-irrigated) land, $20 per acre.

A
Usingg'{;;.‘to represent the selling price per farm in dollars, X; to
represent\the number of aeres of irrigated land in each farm, and X3
to repiesent the number of acres of range land, we can state the method
ofpomputing the selling price in the single equation

X, = 1,000 4+ 100X, 4 20X;

The relations stated in this equation may be represented graphicall)’
as shown in Figure 24.1. The representation is broken up into halves.
The first half shows the relation of farm value to irrigated land for
farms that have no range land; the second shows the relation of farm
value to range land for farms that have no irrigated land. This figure
is constructed exactly the same as was Figure 9 on page 61. Thus n
the upper section of Figure 2;4.1, each change of 1 unit in X5, a8, for
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example, from 3 to 4, adds 1 unit of by, or $100, to the farm value.
Similarly, in the lower section of Figure 24.1, each change of 1 unit in
X3, as, for example, from 5 to 6, adds 1 unit of by, or $20, to the farm
value. In each case, as for zero acres, the line begins with the value
of a, $1,000, to cover the value of the buildings.

The equation just shown (29.1) is called the multiple regression
equation. The term multiple is added to indieate that it explains X
in terms of two or more independent variables, X, X3 . . . X,.. The

£
Farm value N

. . . ' .
RELATION OF FARM VALUE TO
IRRIGATED ACRES, FOR
#2,000 [ FARMS WITH NO
RANGE LAND

1,500 ] ®
M X, = 4000 # 100X, + 20X, o
(when X320} N\
1,000 9 )
500 x.\\.

%4
S

I. | aNY

O z 4 6 BN 12
Xa-Acres of irriggfed land

x,r T T RN ’; o r T
value | RELATION OF FARMAVALUE TO RANGE
ACRES FOR FARMSE WiTH NQ

#1500 I IRRIGATED LAND T

by=20a_ I\, r_-/-‘——-—""'_' ]

1,000
Xy = 1000 100X, + 20Ky
fuhen X3 =0 )}
500 4
N : ) l | I
p ~Q 0 2 6 10 12

P\ I, -Acres of range tand
Fig. 24\I~ Graph of the function ¥ = 1,000 4 100Xz 4+ 20X7;.

coefﬁclents b2 and by are termed net regression coefficients. The term
nef 13 added to indicate that they show the relation of X, to X, and
X réspectwely, excluding, or net of, the associated influences of the
other independent variable or variables. In eontradistinction, the re-

gression coefficient b, of equation (83,
Y = + byxX

may be termed the gross regression coefficient. The term gross is added
here to indicate that it shows the apparent, or gross, relation between
Y and X without considering whether that relation is due to X alone,
or to other independent variables associated with X,
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The difference between the net and gross regression cocfficients may
be further shown by a simple arithmetic illustration, based on the farm-
value formula just discussed.

Let us take a dozen assumed irrigated farms and calculate from
the pricing equation what their seliing prices should be. In setting up
these illustrative farms, let us assume further that in general the farms
with large irrigated areas had small range areas and those with little
irrigated land had larger amounts of range land. Under these condi-
tions the computation works out as follows: N

N

TABLE 34.1 R\

' r ClOMPUTATION oF ESTIMATED SpL1ANG PrIcE, wITH X1 = 1,000 —}—10?}}{ 2+ 20X3

_ Obszervation Xa X3 100(X 3} 20(X 5} ..QsJBula.ted values of X3
nursber (1) (@ (3} ) 7 (8)+(4)+1,000
z.i\:
1 8 5 800 a7 1,500
2 4 5 400 3':}00 1,500
3 3 10 300 > 200 1,500
4 7 8 7000 160 1,860
5 7 10 | W\700 200 1,900
6 8 15 1™ 800 300 2,100
7 6 128 600 240 1,840
8 1 15N 100 300 1,400
&
9 4 .‘,\17 400 . 340 1,740
10 2 oV 2 200 440 1,640
11 & 20 400 400 ©1,800
12 \X 13 500 260 1,760
N

N :

The}apparent relation of the values of X, as just computed, to Xs
andXs may be shown by preparing dot charts of the X to X relation
%nd the X, to X relation. These dot charts are shown in Figure 24.2.

Examining this figure, we find that X ia fairly closely related to
X, bui that it has no definite relationship to X;. We could calculate
the regression lines for each of the two relationships shown. The re-
gression coefficient, by, for the first comparison, would show the
average change in X, with unit changes in X,. The regression coeffi-
cient, by, for the second comparison, would show the average change
in X, with unit changes in X3. The latter coefficient would come very
close to zero, to judge visually from the chart. Both these would be
gross regression coefficients, measuring only the apparent relation be-
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tween X; and each of the other variables. We know in this case that
the values of Xy are completely determined by the values of X, and Xs.
If we eould hold constant, or eliminate, the true effect of X 2 on Xy,
we should find that the relation of the corrected values of X to X5 was
just as close as to Xp. In spite of the fact that the gross regression,
b3, appears to be zero, the net regression, bg, is really 20.

By using the known net regression of X; on X,, we can correct the
Xy values to eliminate that part of their variation which is due to X,

z, N\
Farm value
T T T T T £ ‘\
APPARENT RELATION OF VALUE Ry
2000 - TO IRRIGATED LAND J )
' - : W
- L : (’~:‘.
1,750 | . e RPN
L] 0\{
1,500 |- . . aN
-
1,250 1 ; ] | | N
I 2 3 4 5 6,77 8
X, ~Acres of irrigated !arM
 }
IJ' . 3 >
| APPARENT RELATION - i
OF YALUE TO’
RANGE LANB’
2,000 |- 1
. 9
- ~ .'
1,750 - ‘. . . * J
{ .
1,500 +, .i”t . i
\\ .
1,250 = 1 I 1 | : ]
S, 1o 15 - 20
"¢/ X3 -Acres of range tand

Fia, 242, The anﬁ's;mht relation of farm value to acres of irrigated land and to
rl\g’é\mnd reveals little of the underlying net relationship.

and then :elate the remaining fluctuation to Xj. Let us do that by
subt,ractang by Xy from X;. This process is shown in Table 34.2.

\W‘e can now plot the values of X, corrected for X, Xy — 02X,
a3 shown in the sixth column, against the X3 value, as shown in the
third column. The resulting dot chart is shown in Figure 24.3,

This figure now shows the underlying relation between X; and Xsg,
with all the dots falling exactly on cne straight line. If we now draw
in the regression Iine and caleulate its slope, we shall find it is exactly
the same as the line for b, which was illustrated in the lower section of
Figure 24.1. Figure 24.3 illustrates the net regression of X; on X,
as contrasted to the gross regression which was represented by the
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lower section of Figure 24.2. If X, were gimilarly eorrected for Xg
and the values X; — bgX; were plotted against X, the net Tegression
of X, on X, would gsimilarly be shown. (This step is left for the
student to perform.)
Xy-baXa

RELATION OF VALUE CORRECTEC
FOR IRRIGATED LAND

1,500 1o RANGE LAND D
1,250 w N\
- »
1,000 | L ] ! 1 i 1 o\?\
5 10 R 20 N\
Xy -Acres of range land « \

Fro. 243. After the met influence of irrigated land has been rg}i{c':;'.«.ed, the under-
lying relation of farm value to acres of range land i{ yeary clear.

/N

1f we had not known the underlying relationéhii;s ag given in this
case to start with, but merely had the seriegpbe‘bservations of X;, Xo,
and X3 shown in Table 34.1 and Figure,24.2, would it be possible to

TABLE 342
Corgeoron oF CoMPUTED X, ror CONTRIBUTION OF Xz
Observation L ' baXp
number ‘(’% N R aooxs) | X E;;zxz
) K~ @ @ %)
1 & 5 1,900 800 1,00
2 4 5 1,500 400 1,100
3 "\~;\"3 10 1,500 300 1,200
4 \\ Jo7 8 1,860 700 1,160
ON 7 10 1,000 700 1,200
RS 8 15 2,100 800 1,300
W7 6 12 1,840 600 1,240
8 1 15 1,400 100 1,300
9 4 17 1,740 400 1,340
10 2 29 11,840 200 1,40
11 4 20 1,800 400 1,400
12 5 13 1,760 500 1,260

work out from those observations the underlying, or net, relationships’
That is the problem which next will be explored. Thisg time we shall
use & series where we do not know the relationship, and see how W°
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can proceed to work it out.” Also, as in most practieal cases, we shall
use an example where all the causes of variation are not known and
where we must deal with independent variables which explain only
a part of the variation in the dependent variable.

Practical example. The problem of multiple relations is illustrated
by the data in Table 35. These represent 20 farms in one area, with
varying erop acreages, dairy cows, and incomes. To determine from
these records what income may be expected, on the average, with a
given size of farm and with a given number of cows, it is necessary, €0
estimate the effect of differences in the number of acres on ineomie
and also the effect of differences in the number of cows on incofme:

Sl

TABLE 35 N
Acres, NuMBER oF Cows, anp INcoMES, FOR m,;'mma
Record no. | BSize of farm Size of dairy > Income
—X°
Number of acres | Number\gficows | Dollars per year
1 60 18) 960
2 220 N0 830
3 180 o 14 1,260
4 80 LY 8 610
5 120 N 1 590
6 100, 9 900
7 170 6 820
& - N 110 12 880
] s\ 160 7 850
1w N 230 2 760
2o .
LN 70 7 1,020
& . 120 15 1,080
N3 240 7 960
T 160 0 700
\"\} W 15 90 12 800
16 110 16 1,130
17 220 2 760
18 118 6 740
19 160 12 980
20 &0 15 800

From these data. it would seem that both the size of the farm and
the size of the dairy herd influence farm income, to judge from dot
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charts showing the relation of income to acres {Figure 25) and of
income to number of cows (Figure 26). It appears from these charts

Income Income
1200 1200
1000 {—*-- = - 1000 _ .
T - - P . — . R - ‘\——-
800 .o 2 o 800 + .\
* . e . 2 N
— - — — 4 .\ o —
] ™
600 L_‘ i hd ] 600 YA -
80 100 150 200 230 ] 5’ g, 10 15 20
Acres S Cows

Fig. 25. Correlation chart of acres and  Fre. 26. Cor}efat-ion chart of number of
inecome on individual farms. COWS :}\n@ ‘income on individual farms.
_ ‘ S\ -
that there may be a slight tendency Mor the farms with the larger
acreage in erops to have larger incomes and a rather marked tendency
&Sor the farms with the larger num-

hees | : «%" ber of cows to have larger incomes.
200 - r h Analysis by simple averages not
AN adequate. The simple comparison
" \\ alone, however, is not sufficient to

150 — \ tell exactly how incomes change
. \“ . with acres and with number of
100 |~ L\ e T cows. That is because there is 2
Y. " . marked relation between the size of
s0 ’% f ] { . the farms and the number of cows,
QY 5 o 5 0 as isillustrated in Figure 27. There
D, - Cews is a definite tendency for the larger

"G, 27. Correlation chart of number
of cows and number of acres on indi-
vidual farms.

farms to have smaller dairy herds.
As a result, the difference in in-
_ comes in Figure 25, which appeared
to be due directly to differences in acreages, may be due i part to the
differences in the sizes of the dairy herds on the farms with different.
acreages in crops. If we make groups of farms of 50 to 99 acres, 100
to 150 acres, and so0 on, and average the acres, cows, and income for
each group, as is shown in Table 36, we find a marked difference it
the number of cows from group to group, as well as in the number of
acres and in the incomes. :
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TABLE 36
AVERAGE NUMBER oF Cows anp INcoME, ror Farms oF DIFFERENT Sizzs
Si Number | - A . Average size .
ize group of farms verage sizé of dairy Average income
. Number of acres | Number of cows | Number of dollars
50-99 acres 5 76 13.6 838
100-149 acres fi 111 9.8 887
150-199 acres b 166 7.8 024
200-249 acres 4 228 2.8 828 A\
4 .\
.\ -

The farms of 50 to 99 acres, with an average size of 76 acres have

incomes which average $838; the farms of 150 to 199 smres, ‘with an
average size of 166 acres, show incomes which averagé\$924 Is this
difference in income due to the difference in sizaé?\Before this can
be definitely answered we must consider that.the two groups also
differ in the average number of cows, with 1.3§Q"~in the first group and
only 7.8 in the second. So far, there is hothing to indicate whether
the difference in income is due to the;,difference in the size of the

farms or in the number of cows; we have shown that both vary from

group to group, and that is all. 3

N

If, on the other hand, we should attempt to determine how far
income varied with differencés\in the number -of ecows by classifying
the records with respect
we should secure the resu

&

shown in Table 37.

TABLE 37

¢the number of cows, and averaging incotnes,

AVERAGE Aana\A%Dn IncoME, ror Farus WITH DIFFERERT NUMBERS oF Cows

& |

. 0\ Number | Average size Average size .
Bize (?E;h,a‘d of farms of dairy of farms Average income

N Number of cows | Number of acres | Number of doflars
Under 5 cows il 1.0 190 728
54 eows 6 6.8 143 815
10-14 cows 4 12.5 135 980
15 eows and over & 16.2 88 998

Even though the income is higher on the farms with more cows,
Table 37 dees not indicate how much of that can be credited to the
cows and how much to other factors,

It is evident from the table



172 MULTIPLE CORRELATION BY SUCCESSIVE ELIMINATION

that as the number of cows goes up, the mumber of acres goes down;
are the differences in income associated with changes in number of
gows, in number of acres, or in part with both?

Eliminating the approzimate influence of one variable. What we
need to know is how far income varies with size of farm, as between
farme with the same number of cows; and how far income varies with

TABLE 38

Anyusring Fars Incomes For DIFFERENCES IN NUMBER oF Cowe

2N
Size of farm Size of dairy Income Inf}‘:lfioai?i::e{{ 1}1,10e3?:_i;§]$z§
Number of acres | Number of cows | Dollars | Number oj‘dql‘lars Number of dollars
60 18 960 362, 598
220 0 830 Y1) 830
180 14 1,260 | /982 978
80 6 610 N\ 121 489
120 1 500 A\ 20 570
100 9 <900 181 719
170 6 o0 820 121 699
110 12 JN 880 241 639
160 T~ | 860 141 719
230 ;2“\ 760 40 720
4 3 :
70 7 1,020 342 878
120 O 18 1,080 302 778
240 N 7 960 141 819
160 \ 0 700 0 700
9{ & 12 800 _ 241 559
. ~.;ﬁ) 16 1,130 322 808
220 2 760 40 720
~\J 110 8 740 121 619
j 160 . 12 980 241 739
80 15 800 302 © 488

the number of cows, as between farms of the same size as to acres
One way of determining this would be to adjust the income on each
farm- to eliminate the differences due to (or associated with) the
number of cows, and then compare the adjusted incomes with the gize
of the farm to determine the effect of size on income. To start this
process the effect of the number of cows upon incomes is needed. We
can secure an approximate measure of this by determining the gtraight-



ELIMINATING THE INFLUENCE OF ONE VARIABLE 173

line equation for estimating incomer from cows—approximate only,
since the differences in the size of the farms are ignored at this point,
Determining the straight-line relation according to Chapter 5, we
find that the relation between eows and income s given by the
equation:
Income = $6%4 + 20.11 (number of cows)

According to this equation, farms with no cows averaged about
%694 ineome, and these incomes increased $20.11 for each cow added,
on the average. Knowing this relation, we can adjust the Incoméss
on the several farms by deducting that part of the income mhich
would be assumed due to the cows, according to this average I;élhti’on.

Table 38 illustrates the process of adjusting the ineomes to a
no-cow basis, by subtraeting out this approximate effect of cows on
incomes. The next step is to see what the relation(is’between the
acres in the farm and these adjusted incomes. Plotting both on a
dot chart, Figure 28 shows this relation graphjcqflly. Comparing this
figure with Figure 25, where the relation b&twkeh the acres and the
unadjusted incomes was plotied, we see that the relation is much closer
and more definite for the adjusted incomes than for the unadjusted
incomes. This is only natural; now that the marked relation of num-
ber of cows to income has been remioved, even if only approximately,
the underlying relation of size toudfitome can be more clearly seen.

It is evident from Figupe 38 that size has a more marked effect
upon income than appgdred in
Figure 25, where thé effect of ffgigﬂgﬁd e

cows was mixed in @}so. As was o0 :

pointed ocut earliery/the fact that .
cows and acrés~were correlated 890 I

meant that &he effects of differ- . i, :
ences in GoWwe were mixed in with  e00 f~ %,

the effects of differences in acres. .

Now that the effect of eows has ., i | }

bedw at least roughly removed, 50 100 ALSrf:s 200 250

i i with . ' ]
the Cha.nge I Incomes Fio. 28. Relation of income, adjusted
changes in acres can be more ac- for pumber of cows, to number of acres,

curately determined. o
Fitting straight lines to the relations shown in Figures 25 and 28,

to determine the average change in income with changes in acres,
we obtain regression equations as follows:
Income = $868.74 + (number of acres) $0.0234

Income, effect of cows removed, =$508.51 + (number of acres) $1.33
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It is evident that the determination of the effect of acres upon
income without making some allowance for the effcet of the correlated
varigble, number of cows, in this ease would have sericusly under-
estimated the effect of aeres upon income. Such a determination
would have shown only $0.02 increase in income for cach acre increase
in size, whereas the later determination shows $1.33 inerease in income -
for each acre increase in size.

The relation now shown between income and aercs illustrates the
extent to which one variable may really influence a sccoutl, cven
though its influence is concealed by the presence of a thisd ariable.
From Figure 25, which indicates that there is practicgll\_‘f‘aﬁﬁ correla-
tion between acres and income, one might conclude, that differences
in income were not at all associated with differendesiin acreage; yet
when the variation in income associated with eow® is removed, even
by the rough method shown, a very defitifh relation of income
to size is found. For that resson one caniioh conclude that, because .
two varlables have no correlation, they‘are not associated with each
other; the lack of correlation may be'ﬁie to the compensating influ-
ence of one or more other variahlés, conecaling the hidden relation.

Eliminating the appmxima;éj:’inﬂuence of both wvariables, We
now have two equations, onesshiowing the effect of cows upon income
and the other the effect of ‘agres:

(A) Income = $694 —!-mgﬁumber of cows) $20.11

(B) Income, eﬁect’\(ﬁ\éhws removed,
) = $508.51 + (number of acres) $1.33

These twb,equsations can be combined into a single equation by
taking t};@i\?art of the first one which shows the increase in income
for eadheow and adding it to the second one. This gives an equation
Whip}? includes allowances for both factors, as follows:

~§Q) Tncome = $508.51 + (number of acres) $1.33
: + (number of eows) $20.11

The last equation gives a basis for indicating the effect of both
acres and cows on income and for eomputing the income that might
be expected, on the average, with a farm of & given size and with a
given number of cows. For example, for a farm of 120 acres and
15 eows, the expected income would work out as follows:

Income = $508.51 - (120) $1.33 + (15) $20.11
= $508.51 4 $159.60 + $301.65 = $970



ELIMINATING TﬂE INFLUENCE OF BOTH VARIABLES 175

If 5 cows were added, making it 120 acres and 20 cows, the esti-
mated income would be:
Income = $508.51 + (120) $1.33 + (20) $20.11
= $1070 '
Or if B0 acres were added, making 170 acres and 15 cows, the
income would be estimated:
Income = $508.51 + (170) $1.33 + (15):$20.11
TABLE 39 O
Acroan IncoMe AND INCOME EsTIMATED FEOM NUMBER OF ACRES AND Q{)}(ﬁ

7'\ “
Computation of estimated ineome: « | MActyal
Estimated N income
j Adtaral A

Aecres | Cows {Batimate for acres|Estimate for cows ineotee | $0 minus
) (A} + (C) Ldneome | poeq

$1.33 (acres) $20.11 (cows) +8508.514 ) | estima:

(A) () in¢ome

O
0:0\"
60 | 18 $ 80 $362 LB 0505|3960 8 9.5
220 0 203 0 M sons 830 28.5
180 | 14 239 282 .\ 10205 | 1,260 230.5
%0 6 106 12189 735.5 610 | —125.5
120 | 1 160 L20% 688.5 5% | — 98.5
100 9 133 o MI81 822.5 900 77.5
170 & 226 Q 12t 856.5 820 | — 36.5
110 12 148 (N 241 805.5 880 | — 15.5
160 | 7 213 XN 141 862.5| 860 | — 2.5
230 2 306™, 40 854.5 760 | — 94.5
70 | 17 N3 342 943.5 | 1,020 76.5
120 | 15 {57180 302 970.5 | 1,080 109.5
240 7 4 Y 310 141 968.5 960 | — 8.5
160 AN a3 0 7205 | 700 | - 205
00 | 120 241 869.5 800 | — 69.5
o\’ ' 3

Wo\“16 146 322 976.5 | 1,130 | 153.5
2‘2% a 203 40 841.5 760 | — 81.5
110 G 145 121 775.5 740 — 35.5
160 | 12 213 241 962.5 980 17.5
80 | 15 106 302 916.5 800 | —116.5

Equation (C) can be used as illustrated, to work out what income
might be expected, on the average, for each of the farms shown in
Table 30. The estimated income can then be compared with the
actual income and the difference, if any, determined.
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As is illustrated in Table 39, the estimated incomes vary somewhat
from the actual. This I3 just another way of saying that all the
differences in income cannot be aecounted for by the effect of differ-
ences in acres and in cows, according to the relations summarized in
equation (C). This failure of the estimated values to agree exaetly
with the original values is seen graphically in Figure 28 by the fact
that gll the dots do not lie exactly along the regression line. Sub-
tracting the estimated values from the actual values gives the residual
differences of the actual income above or below the income éstimated
from the two factors, acres and cows. N\

- Correcting results by successive elimination. It-aay now be
recalled that, even though the incomes were adjusted ¢ eliminate the
effects of cows upon ineome before determining Afe relation between
.income and acres, the determination of the relatiénf)etween income and
cows was made without making any allowance¥or the concurrent effect
of acres. Bince we now have an approgigjate measure of the effect
of acres determined while eliminating €6 some extent the effect of
cows, we can use that new measureSequation (B), to adjust the in-
comes for the effect of the acres z}nd#ﬂhen get a more accurate measure
of the true effect of cows alongtupon incomes. This process is shown
in Table 40. Here estimateg of inecome are worked out by equation
{B) on the basis of acres;“showing what the incomes might be ex-
pected to average if @N'the farms had no cows. The difference
between these estimates and the actual incomes may then be con-
sidered to he the p\rt due to cows alone, while eliminating the effect
of differences jn\he numbers of acres. On the first farm, for example,
equation (Bz.\indicates that with no cows the income for 60 acres
should bd($588. Subtracting this from the $960 actually received
leaves 3872 as the income apparently accompanying the 18 eows.

T-hc adjusted incomes may then be plotted on a dot chart with the

o~ puiber of cows as the other variable, as shown in Figure 29. Com-

. paring this figure with Figure 26, where the number of cows was
plotted against income without first making any adjustment in the
original incomes, we easily see how much ecloser the relation is after
making the adjustment. Further, it is evident that cows have a
greater effect upon income than was indicated by the carlier compari-
son. Computing the straight-line relationship for Figure 29 gives
the equation:

(D) "Income, adjusted to constant acres,
= - $68.77 4 (number of cows) $27.88
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By this last computation (equation [D]), each increase of one cow
causes an average increase In income of $27.88, whereas according
to the earlier comparison (equation [A]), each increase of one cow
caused an average increase in income of only $20.11. The second
value is Iarger than the firgt, again

showing the necessity of making ;E;‘:Zf —

allowances for the effeet of one oo | . s

factor before the true value of the 200 | '

other can be properly measured. T 4
Now that we have a new meas-  *°° |~ . -

ure of the effect of cows, we might 100 I~ - (NN

go on to adjust incomes for cows o+ . =

by this new measure and then get .00} ! (‘f}"

a revised value for the effect of 7, ! 2 i

acres upen incomes on & NO-COW ° S0 10 is 20

. ; Lows

bagis, in place of the relation Fra. 29. AW 0:.: income, adjusted
shown in equation (B).. This pos- g4 mlmbe]iz% feres, to number of cows,
sibility of further eorrection will RS
be referred to later. But before that wes w1ll make some experiments
with the new equation (D). \

We now have equations for the relatlon of incomes, adjusted for
the other factors, to the remammg “factors. These two equations, (B)

and (D), are:

74

"\
(B) Income, effect of c@rs ‘removed,
= $508.51 <~ (number of acres} $1.33

(D) Income, admsted to constant acres,
™ = — $68.77 + (number of cows) $27.88
".\;,
Theses %0 equations may be combined to give a rewsed equation
to mdma,te the effect of both cows and acres upon incomes, equa-

tign ().

(EY Income = $439.74 + (number of acres) $1.33
-+ (number of cows) $27.88

Equation (E) is exactly the same as the previeus equation (C)
except that the revised effect of cows is included, and the constant
term hag also been changed owing to changing the allowance for cows.

Tn exactly the same way that equation (C) could be used to work
out the estimated income for sny given combination of cows and
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acres, equation (E) can be also used. Thus for 120 acres and 15
eows, it would give
Estimated income = §439.7 + (120) £1.33 + (15) $27.8%8
' = $439.7 -+ $159.6 + $418.2 = $1,018
TABLE 40

ApsusTing Farsm Incomes ¥or DIFFERENCES IN NUMBER OF AcREs

. Ineome with
. _ Income estm_ated effcets gfacreage
Size of farm Size of dairy | Income | for acres, with differences
Do Cows ) .\'en'i'ninated *

Number of acres | Number of cows | Dollars | Number of dol,@c&é"‘u’\"-umber- af dellars
60 18 - 960 588 O 372
220 0 830 a1\ 29
180 14 1,260 748" 512
80 6 610 815 — &
120 1 590 ¢ B89 - 79
100 9 900{ " 642 258
170 6 820 735 85
110 12 w380 655 225
160 7 L 860 722 138
230 2 N 760 815 — 55
70 RGN 1,020 602 418
120 s 1,080 669 411
240 W 7 960 828 132
160 NS0 700 722 — 22
%0 Af 12 800 629 171

I

107y ™ 16 1,130 655 475
% 2 760 802. — 42
MO 6 740 655 85
NN 160 12 980 722 258
~ 80 15 800 615 185

* Where the actual income is below that expected for » farm of that size with no cows, the
deficit is indicated by the minus sipn,

The result, $1,018, is $48 higher than the $970 worked out by
equation (C}. This higher estimate is due to the faect that equation
(E) makes a larger allowance for the effect of each cow, and 15 is
more than the average number of cows. If less than the average
number of cows were used, equation (E) would give s lower estimate
than equation (C),
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Working out the estimated incomes for each of the original obser-
vations according to equation (E), we obtain results as shown in
Table 41.

 TABLE 41

Actvuan INcoMmE Anp INcoME EstiMaTep FROM NUMEBER OF ACRES AND NUMBER OF
Cowe, REVISED RELATIONS

Computation of estimated income . Actual
E'Stl.ma ted 1 incomé™\
income, | Actual

Acres | Cows [Estimate for acres|Estimate for cows . minus
A B me N
$1.33 (acres) | $2788 (cows) | +)$I3é_7) fneome | egtiginted
(A) . B) . ~.\mcome
60 | 18 $ 80 $502 $1,021.7 | $5960°|—8 61.7
220 0 203 0 732, 7.4\, /830 97.3
180 | 14 239 300 1,068 % 1,260 | 191.3
80 6 108 167 19y elo | —102.7
320 1 160 28 6277 |  Bo0 | — 37.7
100 9 133 251 NN 823.7| 900 76.3
170 8 226 167 4 832.7| 820 | — 127
110 | 12 148 335" 020.7| 880 | — 40.7
160 7 213 ~19%5 847.7( 860 12.3
230 2 306 2886 801.7| 760 | — 41.7
70 | 17 93 4 474 1,006.7 | 1,020 13.3
120 | 15 160, ¢\ 418 1,017.7| 1,080 62.3
240 7 319 195 953.7| 960 6.3
160 0 203 0 652.7| 700 47.3
9 1 12 {120 335 894,7 800 | — 94.7
110 | 16 JO 146 446 1,081.7 1,;28_ gg,g
220 NS 203 56 788.7 — 28.
110 96% 148 167 wor| 70 | — 12,7
160 4392 213 335 987.7 080 | — 7.7
A ) 15 106 418 963.7| 800 | —163.7
)
N

Comparing the residuals, or differences between the aci_;ual and
estimsted income, obtained by means of this new equation with those
obtained using the equation in itg first form (shown in Table _39), we
see that in more than half the cases they are smaller with the
vevised form. A more definite comparison can be made by comput-
ing the standard deviation of the residuals in each case. The standard
deviation of the residuals shown in Table 39, using egquation (C),
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is $90.29, whereas the standard deviation of the residuals shown in
Table 41, using equation (E), is but $78.70, It is apparent from this
that the revised equation, determined after the effects of the other
variables had been eliminated, gives more accurate cstimates of income
than does the original equation in which the effects of the other vari-
ables had not heen so fully eliminated.

It was suggested previously that the last corrected values for the
relation of cows to income gave a new basis for correcting income
s0 ag to measure more accurately the rclation of acres to{income.
This in turn would give a new basis for measuring the effect of cows,
and so on, until a final stable value had been reached\ ®o long as
a new correction would result in a further change Yn"the computed
effect of either variable, the new values would givé athetter basis for
estimating income than did the previous values{ Only when the point
was reached where no further change needibe’made in the effect of
either variable could it be said that the.relation of each variable to
income had been quite eorrectly measuﬂ-‘{d while allowing for the influ-
ence of the other factor, and thatwhight involve a large number of
suceessive corrections. o\

This method of allowing far Whe effect of other factors o as to
determine the true relation, ¢fSeach one to the dependent factor (as
income, in this case), by,,ﬁi'st'correcting for one, and then for another,
1s known as the methe@\of successive elimination. This method can
be used where there ‘are threc or more independent factors related to
(or accompanying\variations in) a dependent (or resultant) factor
just as it was,ysed here for two factors, except that then the depend-
ent needs to\be corrected in turn to eliminate the effects of all the
other ir;d,t;ﬁeﬁdent. factors except the particular one whose effect i3
being tpasured. But although it is possible to measure the relations by
thig\method, it would be a very slow and laborious process. A

' gh@rt'er mathematical method which gives the same result by more
{“\direct processes is available instead, . This method, known as the
method of multiple correlation, is presented in detail in Chapter 12.

Summary. This chapter has shown that when two related fac-
tors beth affect a third factor it is difficult to measure the effect of
either factor upon the third without the result being affected by both
causal factors. Allowing for this duplieation by eliminating the
effects of each factor in turn (successive elimination) can gradually
determine the true effect of each, but the method is long and laborious.



CHAPTER 11

DETERMINING THE WAY ONE VARIABLE CHANGES WHEN
TWO OR MORE OTHER VARIABLES CHANGE: (2) BY - (™
CROSS-CLASSIFICATION AND AVERAGES O\
"N\

We have previously seen (Chapter 4) how the relation *between
two variables can be studied by means of sverages. . Anjextension
of the same method can be used for problems where two-or more vari-
ables affect & third variable, such as that discussed\in/the last chapter.

Analysis by averages where there are two.ifidependent variables
involves classifying the records first by on 'v}riable, then breaking
cach of the resulting groups into severgl smaller groups secording
to the values of the second variable. If‘a’third independent variable
were to be considered, these groups-would be broken up into still
gmaller groups, according to the valtes of the third variable. Then
the values of the dependent vasidble, as well ag each of the inde-
pendent variables, would begveraged for each subgroup. This process
is known as subclassification or cross-classification.

Cross-classification “for three variables. In the problem pre-
gented in the last ch:apt-er, there were two independent variables—
number of cows afid number of acres. The records would therefore
need to be cld@sified into groups both according to the number of
eows and é:ﬁumber of acres on each farm. BSince there is such a
small nuiber of records the groups should not be made too small.
Let 1;3\~{-£i,ke three groups for cows; less than 6, 6 to 11, and 12 and
oyétyand four groups for the size of farm; from 50 to 99 acres, from
100M0 149, from 150 to 199, and 200 acres and over. This will give
us twelve possible groups in all. The records may be classified into
these twelve groups and totals and averages computed for each, as
shown in detail in Table 42. '

It is apparent that none of these groups has a sufficient number of
farms represented to make the averages particularly significant; yet
even at that a certain regularity in the averages can be obscrved. Im
each eolumn the average income increases as the size of farm increases,
though there is but little difference in the average number of cows

Hit)
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from group to group; similarly across each line of averages the
income increases as the number of cows increases, though there
is but little difference in the average size of farm from group to

TABLE 42

CROSS-CLASBIFICATION OF R®PORTS AccomrbiNg To S1ZE oF Farm axwp Suze
oF Dairy Hern

Size of dairy herd Q
e\
Size of farm Under 6 cows 6 to 11 cows L2 rowe snd over
Agres | Cows |Income| Acres | Cows Incon;é Abres | Cows |Income
-
Num- | Num- Dollars Num- | Nume Dillars Num- | Nuwm- Dollars
ber ber ber b( \ ber ber
.................. 80 |78 610| 60 |18 960
...................... P S R I (UM I 1,020
50 to 99 meresy|. ... ... ... ... ANY...... ceeeed| 90 12 800
................. 83 | 15 800
Total. ... |.oooofoenii]. RN ) PR SR 300 |62 | 3,580
Average.....|......].... N 80 6 610 | 75 | 15.5 | 895
120 JCB 590 | 100 | 9 900 | 110 | 12 880
14
10(;;15 o ' TR\ U F 10 | 6 740 | 120 | 15 | 1,080
AN 110 | 16 1,130
N .
Total. . ] oo coufeeei]oann. 210 | 15 | 1,640 | 340 | 43 | 3,090
AveQ 120 | L 590} 105 | 7.5| 820 | 113 | 14.3 | 1,080
K s’\\ -
150 to 199 180 | 0 700 170 | 6 820 | 180 | 14 | 1,260
LN Taeres L 160 7 860 | 160 | 12 980
\.‘: ——
Total.......|......f.oo b 330 |13 1,680 | 340 | 26 | 2,240
Average. .. .. 160 | 0 700 | 165 [ 6.5| 840 | 170 [ 13 1,120
200 acres and 220 1 0 830 | 240 7 860
over - 230 1 2 760
220 | 2 760
Total....... 670 | 4 2,350
Average..... 223 1 1.3 783 | 240 Fi 960
_ S
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group. These relations may be more clearly seen in Figures 30 and
31, where the average incomes from Table 42 are charted, first for
differences in the number of cows with farms of similar sizes, and
then for differences in the number of acres, with farms of similar

nunibers of cows.

Average
Income
“Farms of
oo |-
e 150 to F9Fatres "\
1000 }Over 200scres *
. 100 10149 acres A\
900 \ ~ e\
. o NS ©
800 . ” 50 -99 acres N
/ // "'.:'«
F00 : : )
4 //’ AN
600 |1 | ! P\,
o 5 12 5 20 4
Average number of cows \

Fiz. 30. Difference in average income with diﬁerence,i::g)ﬁmber, of cows, for farms
grouped by size of fapmy

Both figures show the tendency!jo}: income to inerease with an
increase in the independent varighie, when the effect of the other
variable is held fairly constant by ‘the grouping process. In Figure

o

Average A\
Income 8 )
\\ farms of
1100 e
e _’__.--"' 12 cows ot orer

1000 ) ey )

t\‘9°.° - ..-"'. 6/ cows

N 8o - .
.s\\ "' S periter G cons
o 700 |~ ,/"
AN N ”
) €00 | ] }
\ ¥y 50 100 15¢ 200 250
Averege number of acres

Tic. 31 Difference in average income with difference in number of acres, for farms
grouped by numbers of cows.

30 the lines show sbout the same general slope for each of the four

groups, though there are some irregularities. Figure 31 similarly

shows about the same general change in income with a given change

in the size of the farm, no matter what is the number of cows; bub

here the irregularities from group to group &are even more striking.
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In Chapter 4 it was shown that such irregularities from group to

group might readily be due to random errors of sampling.

In the

present case, the number of items in each group is so small that it
would be hardly worth while to compute the standard error for each
average. Even if there were many more cases in each group than are
available here, differences as large as those shown might be due
simply to random differences in sampling and therefore have no real

which the sample was selected.

Although the averages obtained by the process of czulf’}s.\ortmg may
be considered to show the general effect of ehanges n ofle variable,
such as cows, upon income, with the effect of the cher variable, such
as acres, removed, they cannot be considered/ A0 show the specifie

effect of specific differences.

‘meaning as Indicating differences prevailing in the universe from
"N\

For example\,\fnueh more evidence

would be needed to-prove that, between F5\and 100 acres, a change
of 1 acre has much greater effect upon, Aheome on farms with 6 to 11
‘cows than on farms with 12 cows orfmore, even though the lines in
Figure 31 would appear to indiecatevthis,
is that on farms of both numbers ‘of tows there is a tendency for ineome

to increase with an inerease i the number of acres,

N

1% TABLFE 43

All that is really proved

INTFEEENCE 1N Avp'QAGE Incoms ror FarMs oF DIFFERENT SIZES AND

Wirst Drrorent S1zEs oF Darry Herd

)  Under 8 cows

6 to 11 cows

12 cows or over

P\ in herd in herd in herd
Bize offarm —
\\‘ Size of | Average.| Sizeof | Average | Sizeof | Average
L\ group | income | group | income | group | income
o Numb Numb Numbe
W Number wmber wmber
Dalia : Dl Doilars
of farms paars of farms oam af farms
50to 99ameres .| ......, [ ....... 1 610 4 895
100 to 149 acres:..| 1 590 2 820 3 1,030
150 to 199 acres...| 1 700 2 840 2 1,120
200 to 249 acres. . . 733 1 960 | ... .| e

"The averages obtamcd by the process shown in Table 42 may be
summarized for publication in a form similar to Table 43. The num-
ber of cages replecenbed in each average is included to prevent. the
reader from placing an undue amount of confidence in an average
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based on a small number of observations. In addition, each should be
followed by - its own standard error.

The very small number of eases included in each of the groups
is strikingly brought out in Table 43. ITven if there were five times
as many farms to deal with—100 in all—if they were distributed in
the same manner, the largest group would have only 20 cases, and
all the rest would have 15 or less, which, under ordinary conditions,
would be hardly enough for really significant averages.

Average differences between matched sub-groups. After the.ob=
scrvations have been grouped and averaged as shown in Table 43,
average differences in the dependent variable (as here, dollzirs\ of
income), with given differences in each independent variable,/can be
roughly determined while holding constant the other{ingdependent
variable or variables. This involves determining the average differences
between the averages for the dependent variable for matched groups.
The computations are shown in Tables 43.1 apg :13.2.

W

TABLE 43.1 ‘/:x\

CHaNGE 1IN AVERAGE INCOME BETWEEN GRODFB MATCHED FOR S1izE OF Fanu

~

PR

A oE ¢ D E

*

Size of farm Under N6 1o Increase Over Tncrease
6 cows N 11 cows | (B—A) 12 cows {(D-—-B)

Acres \D&flars Dollars Dollars Dollars Dollars
50-99 AN .. 610 | ... 895 285
100-149 | ;7] 5% 820 230 1,030 210
150-189 Y 700 840 140 1,120 280
200-249 0> 783 060 177 | e |
Na
\ BT S U 28

Average ghﬁ.’n\ge witheows | ....... | -~ . .-

'S

\E}rom these results it appears that increasing the number of cows
from under 6 to between 6 and 11, without changing the size of farm,
was accompanied by an average increase of $182. Increasing the
cows further to over 12 cows was accompanied by a further increase
of income of $258. Similarly, increasing the size of farm from under
90 acres to 100-149 aeres, without changing the number of cows, was
accompanied by an increase of $173 in income. A further increase to
150-199 acres was accompanied by a further average increase of $7.3
in income, and to 200-249 acres, by $102 more income. (In this
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discussion “increase’’ In size or cows has been used to designate dif.
ferences between results for farms of different sizes or with different
number of cows.) These rough measurements of differences in the de-
pendent variable with differences in one independent wvariable, while
holding s gsecond independent constant by subsorting, may be compared
~ with results obtained by the more exaect methods set forth in subse-
quent chapters? _
This same method may be applied to pet the average difference
hetween matehed subgroups, where two or more other inde}ﬁendent

variables are held constant by the grouping. O\
0\ ‘
TABLE 43.2 A\
CHaANGE IN AVERAGE INCOME BETWEEN GRoUps MATcgE:i)'FOR Nuomeer oF Cows
Number A B o D\ E o e
fum 50-09 | 100-149 | Increase '1,58}199 Inecrease | 200-249 | Incresse
ol cows atres aeres | (B—A)|\ atres | (D—-B) | acres | (F-D)
Dollars | Dollars | Dollars | Dollars | Dollars | Dollars | Dollars
Underd.......] ...... 590 O . T 110 783 83
Btoll,,....., 610 820" 210 840 20 960 120
12 or over...... 895 1,630 135 1,120 90 | ...
Average change Xe >
with aeres. .. .| . \\ ...... 173 | ..., £ S 102

Limitation of cross-classification for many variables. This small
problem./illustrates one fundamental difficulty with the method of
subc\la\\dyéiﬁcation and averaging—the large number of cases required-
for)\tonclusive results. Though there are only two independent

. (vatiubles involved, and the records are classified into only three groups

Jone way and four the other, apparently 100 cases or morc would be
required for really significant results. If it had been desired to sub-
classify the records according to two more additional variables—say
number of men employed and number of hogs kept—that would have
greatly increased the number of records necessary. If each of the

*In computing Tables 431 and 432, no attention was paid to weighting the
results aceording to the number of cases falling in each group, or to the sampling
reliability of each average. For a discussion of the first of these points, and for
possible methods of dealing with it, see F. A. Harper, Analyzing data for relation-
ships, Comell University Agricultural Ezperiment Station, Memoir 231, June, 1940.
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" TABLE 44

FosM rox Szowmwag DIFFERENCES 1IN AVERAGE INcoME FoR Fanme (CrLAssrFiED
BY AcrEs, Mex Eumrroven, Cows, anp Hogs

1 man 2 men 3 men
Aren and number of hogs

Bize * :‘\V(amge Size * z.&vera.ge Size * {Lversge
income income mcome\

TUnder 6 cows KN

Farms of 50 to 99 acres: ) o

Farms of 100 to 149 acres:
TInder 20 hoga. . ...... ~\\.f
20-39 hogs. ...vnnn ... RA
40 hogs and over. . .... &

Farms of 50 to 99 acres: N
Under 20 hogs. . ...... L
20-39hogs. . ... ... ~\
40 hogs and over,..... o

TFarms of 100 to 140 acresy, \\
Under 20 hogs. . .. .0
20-30 hogs. ... il

40 hogs and over™. ..

\\’ 12 cows and over

aX
2

Fam of 50 to 99 acres:
“Under 20 hogs. ... ..
2039 hogs............
40 hogs and aver......

Farms of 100 to 149 acres:
Under 20 hogs. . ......
20-39hogs. . ..........
40 hogs and over. . ....

Ete.

* Number of reports in group.
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groups already shown had been further divided info 1-man, 2-man,
and 3-or-more-man farms, and each of these sub-groups had been fur-
ther divided into farms with less than 20 hegs, 20 to 39 hogs, and
40 or more hogs, that would have inereased the number of possible
groups from 12 to 108, Where over 100 records would have been
needed in the first cage to give results at all reliable, probably a thou-
sand or more records would be needed with this further classifieation.
Although such large numbers of records are available in some types
of work, as in census tabulations, they are rarely obtainahlein most
economic or zocial-geience studies, and for that reason treatment of a
large number of variagbles by the method of detailed sub-classification
has but limited application in this field. )

The way in which a fourfold classification, suf:h"a.s that deseribed
in the preceding paragraph, might be presqn.tfed is indicated by the
form in Table 44, even though it would dnly occasionally be used.

In addition to the large number of cages required to ebtain reliable
results, the method of sub-classification and averaging has further
shortcomings; it provides no meaghre of how important the relation
shown is as a cause of variationn.the factor being studied, or of how
closely that factor may be esfimated from the others on the basis of
the relations shown. ThugTﬁLble 43 shows that, on the average, certain
differences in the number 6f cows and in the number of acres were
accompanicd by cerﬁ-aén differences in the average income. By itself,
however, it did @t give any indication of how closely the income
could be cstimated if the number of acres or the number of eows
were known {96r did it indicate the proportion of the variance in
income which can be explained by concurrent differences in size of
farm_and“size of dairy. For these reasons, as well as because of
the Jarge number of cases neccssary to obtain reliable conclusions,
thesmethod of sub-classification and averaging does not determine

.‘\ithc relationships where many variables are involved =o satisfac-
“torily as do other methods, which will be considered in subsequent
chapters,

Significance of differences in group averages. When the data are
classificd as shown above, the results may be tested to determine
whether the differcnces found between successive group averages are

" significant, or whether they might have occurred by chance. One
method for testing this is to compute the standard error for each group
average and to consider these standard errors in judging whether or
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not the differences are significant.* A second method of judging -the
significance of the diffcrences.is by determining whether the variation
between the averages of the columns or cells is or is not significant, as
compared to the variation between the individual items which fall in
cach eolumn or cell. Relatively simple methods, set forth in standard
textbooks,?® are available for this “analysis of variance.” Since these
methods relate only to the significance of the observed differences,
and not to the functional nature of the relations which underlie those
differences, they are not presented here, Q

Summary. The relation of one variable to several others may.be
approximately determined by detailed cross-classification. Vety large
numbers of records are required to make the averages accgrate, how-
¢ver, sinee the number of groups increases rapidly wjth"additional
variables. Further, the averages by themselves givg'\no'indication of
the closeness of correlation. \V

2 Formulas for the standard errors of the differencobetween two group averages
are given by G, Udny Yule and M. G. Kendall in th-(i'rs ntroduction Lo the Theory
of Stalistics {eleventh edition), pp. 387-88, C. Giffih 'and Co, Lid., London, 1937,

2 Prederick E. Croxton apd Dudley §. Cowden, Applied General Stalistics,

pp. 351-50, Prentice-Hall, Tne, New York, 1936 .
R. A. Fisher, Statistical Methods faxyResearch Weorkers (seventh edition},

Chapter VITI, Oliver and Boyd, Londdn'and Edinburgh, 1938.
(1. W. Snedecor, Statistical Methods Applied to Experiments in Agriculture and
Biology, Chapters 10, 11, Iowa S{ate College Press, Ames, Towa, 1937.
O

a\



CHAPTER 12

DETERMINING THE WAY ONE VARIABLE CHANGES WHEN
TWO0 OR MORE VARIABLES CHANGE: (3) BY USING
A LINEAR REGRESSION EQUATION O\
7'\

In Chapter 10 it was shown that an equation could b€ arrived at ti
express the average relation between income, acredyand cows, as fol-
lows: R4
Equation (E) N4

AN .
Income = 439.74 4- 1,33 (number of a{re}) + 27.88 {numher of cows)

If we designate the three serigsof variable quantitics, income,
-acres, and cows, by the symbol X with different subscripts, using X, to
represent dollars of income, X, {o'represent number of acres, and Xy to
represent the number of cuws',"vs;é can rewrite the equation in the form

X) =(89.74 + 1.33X, + 27.88X,

If now we use i-hme’\symbol a to represent the constant quantity
439.74; by to :regr}s}nt 1.33, the amount which X, increases for each
increase of one'unit in X, (oue acre) ; and by to represent 27.88, the
amount whieh*X; increases for each inerease of one unit in X5 (one
cow) ; t;h,g;}ciuation appears as

\§ Xy =a+bX, + X3 (30)

..\': Comparing this equation with the regression equation for the
<‘i&ti‘aigh‘t-]inc relation between two variables

Y =a-+bX

we see that the two equations are just alike, exeept for the difference
in the symbols used to represent the different variables and for our
having added the expression for an additional variable. In equation
(30), X, the variable which is being estimated, is termed the de-
pendent variable, since its estimated value depends upon those of
the other variable or variables; and X o and X5 are termed independent
variables, since their values are taken just as observed, independent
190
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of any of the conditions of the problem. Since there is more than one
_independent variable concerned, the equation is said to be & multiple
esthruating equation, or a multiple linear regression equation.

Chapter 10 showed that the values of the constants @, by, and bg,
which in the partieular problem considered indicate what the average
income would be for a farm and dairy of any given size, could be
worked out by a eut-and-try method which gradually approached
nearer and nearer to the right values. It is evident, however, that for
sny particular eriterion of “rightness” only one set of values for
these constants can be exaetly right. If the criterion of “rightness”
is taken as that which will make the standard deviation of the-tesiduals,
when ineome is estimated from the other two variablqs‘%',aé' small as
possible, the values of a, by, and by which will gives @hfé result can
be determined once and for all by a direct mathematical process.
Determining these values so ag to give the “begt™equation for esti-
mating X, on the basis of linear relations to 'X%and X is the first step
in the method of linear multiple correlation, :

Determining a regression equation foerntwo independent variables.
The best values for a, bg and bz Jjn the multiple regression equa-
tion (30), can be worked out byj’pn' extension of the same process
used in working out the values for the estimating equation when only
one independent variable was ‘tonsidered. Just as before, the value of
the b constants will be détermined first, equation (31), and then the
a values will be wor{é@ out from them:*

\2('53)52. + Z(zaaslbs = Z(xi2s) } 1)
K W D(raxa)bs + Z(adby = Z(z123) '
§‘ a = Ml - bgMz - b3M3 (32)

2 S

Heve, just as in Chapter 5, the symbol M represents the mean value
&Pich variable, and the subscript indicates the particular variable.

Similarly, the symbols (w23}, E(xyx), and X (x x5} represent
the sums of the products of the variables, corrected to adjust them to
deviations from the mean; that is, E(zyz) = Z[(Xy — My) (X2 —
M,)]. Likewise the symbols Z(x?), ete., represent the sums of the
squares of the variables, also adjusted to deviations from the mean.

18ea Note 6, Appendix 2, for the derivations of these equations. They are the
normal equations for two independent variables, correm.)ondmg to the normal equa-
tions for one independent w_ariabfe given on page 87, in the footnote.
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Using the two basic formulas

E(mlx;_;) = E(X1X2) bl an.ﬂ.u'g

- (11)
and
Z(x3) = Z(X5) — n(M3)

the other values shown in equation (31) may be worked out as follows:
Z{zzg) = Z(X,X3) — aM M,
S(oxs) = S(XoX3) — nMaM; O
2@ = 2XD - (M) <O

Computing the extensions. Inspection of these equa’uom shows that
there are eight arithmetic values which must be, computed from the
original data to work out the values to substltut&m equations (31} and .
(32). ‘These are XX, 3X, IX, NX¥), T(X2), (XX,
2(X,X3), and 2(X,X;). The actual “o\lxk of eomputing these values
for the farm-income dats orlglnally pm@ented in Table 35 is shown in
Table 45. [The value 2(X?) is ngé.meeded in solving equations (31)
or (32); but, as it will he neede;} later it i3 also worked out here for
convenience in ealeulation.]

After we have multlphed %hrough all the extensions shown in this
table, and added each of.thé columns, our next step s to compute the
values My, M, and M\N by dividing the sums of each of the first three
columns by the n n@er of cases. The correction values for each of the
produets is then c%puted and entered below the value from which it Is
to be suhtract\ed Thus the value below the sum of the fourth eolumn,
2(X3), is jtsrcorrection factor, n(M2). This is equal to 20(13.95)%
or 389205, which is the value entered. Similarly, the valuc below the
sum Ne fifth column, (X,X3), is its correction factor n(MaM3),
or 20(8.85) (13.95), which equals 2460.15. All the other correction
factors are similarly worked out and entered, Then subtracting cach

\ Jeorrection factor from the. value above it gives the values all ready for
equations (31). Thus the value at the foot of column 4 is the value for
2(z%); and so on. When these values are substituted in the appro-
priate spaces of equations (31), they become

@ ZED)be+Z(2azs)bs =212, 606.95 by — 304,15 by = 14.20
(D Sleora)ba+Z(eDby=Trizs) | —394.15 by +676.55 by = 1360.60

_ So‘lving .the equations. The next step is to solve the two algebraic
equations simultaneously to determine the values for b, and bs.
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The simplest way to earry this through is by the Doolittle method.
’I“he first equation is divided through by the coefficient of by, with the
sign changed, giving the first derived equation {(I'):

@ 606.95 by — 394.15 by = 14.20
(1) — by -+ 0.64930 by = — 0.02340
TABLE 45

N\
CoOMPUTATION OF VArvUzs To DorerMing Muoruriere REGREsSION EQUATION

To EerMATE One: Variasre FroM Two Orargs ¢\
N\
1 2 3 4 5 8 AN D
Number | Number Nul:flber ”~? :
of " Of_ dollars A\ i
BCTEE COWE . % R 3
INCome: ’
X, X3 X x3 XX | DiXa N X3 XX x}
i} 18 o6 36 108 gg;‘\ 324 | 1,728 9,218
22 o 83 | 484 LI 0 0 6,989
18 14 128 | 324 252 \2:268 198 | 1,764 | 15876
8 8 61 74 48 N 488 36 366 3,721
12 1 59 144 A 708 1 59 3,481
10 9 9o | 100 ¢hy Vo0 900 B1 BlD 8,100
17 a. sz | =3y 102 1 1,304 38 402 8,724
11 12 sg | ,121%| 132 968 144 | 1,058 7,744
16 7 86 JAzse 12 | 1,378 49 €02 7,308
23 2 | 7e\ 520 46 | 1148 4 132 | B
7 oL "age 49 119 14 289 | 1,784 | 10,404
12 15 4\ 108 | 14 186 | 1,205 225 | 1,620 | 11,084
24 9 88 | 578 168 | 2,304 4 672 9,218
16 A 70 elilis L] 1,120 0 0 4,800
g J o\’m’ 80 81 108 720 144 %80 6,400
1\\:,\'“ 18 13 | 121 176 | 1,243 | 256 | 1,808 | 12,769
& 2 ve | 484 44 | 1672 4 152 5776
SAN 8 7 | 121 . 66 814 36 444 5.ATE
N 18 12 93 256 192 1,568 144 | 1,176 9,604
P 8 15 20 64 120 840 225 | 1,200 £,400
\™ _
sh, ..} o7 77 1744 | 4400 | 2075 (24343 | 2243 18705 |157.532
Means..| 1385 | 88 | 872
COrreckion Hem. . ... o.ovverrarraie 3.802.05| 2,469.15]24,328.80| 1,566.45)15,434.40(152,076.80
Corrocted Suma ., .. .. ..oov-en- eeens 806.85] — 804.15 1420 &76.55| 1,380.60| 5,456.20

#1n these computations, Xg snd X have been divided by 10. (3¢ Note 3, Appendix 2)

Then equation (II) is entered, and under it js written equation (I}
multiplied by the coefficient of b3 in equation (I’) (0.64939). The sum
of these two equations is then taken, eliminating the values in by:
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an - —304.15 by + 676.55 by = 1360.60

(0.64939) (1) +804.15 b, — 25596 by =  0.22
(1) 420.59 by = 1369.82
(I1) by =  3.25690

~ As indicated above, this step gives the value of by. This is then
substituted in equation (I') and the value of by determined:

— by + 0.64930(3.25600) = — 0.02340
28N
by = 002340 + 2.11500 = 2.13840 &

" The values of by and bg being thus obtained, the néxi; step is to sub-
gtitute them, together with the other values requlmd I equation (32)
to work out the value for a:

a=M; — bsM; — b3M; \\
o = 872 — (21384)(13, 95). = (3.2569)(8.85)
= 87.2 — 29.83 — 2882 = 2855

Estimating X, from X5 and 13 Having computed the values for
@, by, and bs, we can now erte out our regression equation {30}, with
the best values, as determmed by the mathematical ealculation:

X
(10 28 55 1+ 2.1384 (X)+32569X3

27Xy = 285.5 + 2.1384X, -+ 32.560X,

mQé}mg this. equation with the last one obtained in Chapter 19,
(page\l78), we see that the mathematical determination has changed
the\$1.33 allowed for the effect of each aere (b,) to $2.14, and in-
coeased the $27.83 allowed for the effect of each cow {by) to $32.57.

_\Just what effect this has on the aceuracy of the equation as a basis
for estimating inecome from cows and acres may be judged by working
out an estimated income for each of the 20 cases according to these
last results, and then eomparing the estimated values with the original
values, just as was done before with the equations worked out by the
approximation method. The necessary computation is shown in Table 46.

The operations that have been performed in this table may be
mathematically stated as follows:

First, an estimated value of income, X, has been worked out by
substituting in equation (30) the valueg for X, and X, given by each
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successive observation, Using the symbol X; to represent this esti-
mated value of X it may be defined

X1 = a+ bpXs + byXs (33)

Each estimated income has next been subtracted from the cor-
responding actual income, With the symbol z used to represent the
restdual, the amount by whieh the actual value exceeds or falls below
the estimated value, it may be defined Q"

z=X; — X1 (3e)
"N

The residual 2 has exactly the same meaning when the, estimated
values of the dependent variable are based upon twosen more vari-
ables, using multiple correlation, as it had previously, When the esti-
mate was based on a single variable, with simple.eorrelation,

The accuracy of the last estimating equatﬁxQ%,.‘derived by an exact
mathematical process, can now be compared-with- the accuracy of
previous equations, obtained by a ecut-and-try process. Computing
the standard deviation of the residuals shown in this last table and
comparing it with the standard deyiations of the residuals worked
out in Tables 39 and 41 of Chaptér 10, we find the comparison to be:

Standard deviations of regiduals using various straight-line equa-
tions: K

First appro@ tion equation, o, = 90.29
Second @p?rmdmation equation, o, = 78.70
Matl{(ilﬁa:tically determined equation, o, = 70.48

The e,\(aﬁbn determined mathematically gives a closer estimate
of the aetial incomes from which it was derived than do either
of thetwao previous equations, This will always hold true. The mathe-
nfatidally determined equation gives once and for all the estimates of
X Ywhich will make o, the smallest that can be obtained, assuming
linear relations. The best that could be done by the approximation
method would be to obtain the same conclusions as would be obtained
by the other method. The sucecessive steps in Chapter 10 have shown
how difficult it is to do this when the several independent variables are
correlated with each other, and so tend to vary with ope another. _ The
mathematical method for determining the estimating equatio_n, as llus-
trated in this Chapter (or some alternative form of co!nputatlm.l involv-
ing the same principle), has therefore been practically universally
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adopted as the standard way of determining the precise way in which
one variable is related to, or may be estimated from, two or more vari-
ables related among themselves, if only straight-line relations are o

be assumed.

TABLE 46

Acroat IncoME AND INcOME EstiMatep FroM Numsier oF AcrEs anp Cows,
oN Basrs or MATHEMATICALLY DETERMINED RELATIONS

A

S

Computation of estimated N Aetnal
incomes L '\~,\ minys

Aeres, Cows, }L‘stamnte(l' ¢ _f’ketua.l estimated

inéotne, Y 1NCOme, .

X, X3  |Estimated|Estimated x! & X, lncome,

for acres, | for cows, | Constant] Sy X=X
bXs | bXs | ¢ :

80 18 128 586 288y 1,000 960 | — 40
220 0 0 | .. &G 756 830 74
180 14 385 466 [W\288 1,127 1,260 133

80 6 71 195 . NS 286 652 610 —42
120 1 2857 338 286 576 590 14
100 9 214 | 3203 286 703 960 107
170 (] 363 .. V195 286 844 820 —24
110 12 2355 391 286 912 880 ~32
160 7 342 228 286 856 860 4
230 2 |42 65 286 843 760 -8
70 17\' > 150 554 286 990 1,020 30
120 | (15 257 489 286 1,032 | 1,080 43
240 |37 513 228 286 1,027 960 ~67
Wl 0 342 286 628 700 72
N 12 192 391 286 869 800 —69
N 110 16 235 521 286 1,042 1,130 88
220 2 470 65 286 821 760 ~61
110 6 235 105 286 716 740 24
160 12 342 301 286 1,019 980 -39
80 15 171 489 286 946 800 —146

Nomenclature in multiple linear correlation. When the constants
of the estimating equation are determined by the exaet mathematical
process, the equation is called a multiple regression equation, and the
constants by and bg, which show, in this ease, the average increase
in income (X,) for unit inereases in acres (Xg), and cows (Xg), are
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termed net regression coefficients. The constant by is termed “the net
regression of X; on X,, holding X3 constant,” and by is termed “the
net regression of X, on X3, holding X, eenstant,” All that that means
for by, for example, is “the average change observed in X, with unit
changes in X,, determined while simultaneously eliminating from X,
any variation accompanying (hence temporarily assumed due to)
changes in X3.”72 -

In crder that the mathematical notation for the net regression co-
efficients may show quite clearly whieh independent variables were held
constant when a particular coefficient was determined, the substtipts
under the b are sometimes more elaborate, showing first the dependent
variable, then the independent variable whose effect is s§&tgﬂ’, then a
period followed by the independent variables which wereyheld constant
in the process, Thus the b, we have been using'm{bﬁld be written
The whole regression equation would appeary’

Xy =103+ biosXs + b 33§3 (35)

This notation serves to distinguish thesge-net regression coefficients
from those which would be obtained if gdditional independent variables
were included. Thus if a third indep:é'ndént variable, say X4, were also
considered; the equation would l:ea'gl ‘

X1 = ar.284 + 5{2“,341{2 + b13.24X3 + bra.23Xs (36)

biz.a.

For still another Iv@bie it would be
Xy = a1.93¢5 +'512;§45Xz + bia.245X3 + Dra.23sXs + drs.234Xs  (37)

AS

The notationfor ¢ is changed as well as for each of the ¥’s; &4 034
will probahlybe’ a different value from oy o3, just as byg 4 is likely to
be somewhab different from bys 3. This is to be expected; if some
other fgetor, such as the number of men working on each farm, were
taken :,ﬁifo account as well as the number of aeres and the number of
c-éws}' the average increase in inecome per additional acre, with both the
number of cows and the number of men held constant, might be quite
different, from what it would be with only the number of cows held con-
stant. In the last case, any increase in income owing to more men
being at work on the larger number of acres would be aseribed to the
acres and not to the men, whereas in the former this element would be
removed from the increase attributed to the acres.

2 The torm partial regression coefficient is used by some authors in place of net
regression coefficient.



198 MULTIPLE LINEAR REGRESSION

Determining a regression equation for three independent variables,
Solely to illustrate the method, we may take the number of men on
each of these 20 farms as given in Table 47 and work out an estimating
equation considering men as well as acres and cows. (In actual
practice, 20 observations are usually too few to determine, with any
degree of reliability, the net relation of one variable to 3 independent

variables. ‘This problem is used here solely to illustrate the process.)

With the number of men designated as X4, the unknown constants
to be determined arc those given in eguation (36); ti'ahe) Bizsa
by 24, a0d bigns. They can be obtained by the solution gfythe follow-
ing set of equations. N\

Ny

Z(@)bis.3s  + Zl(zewa)bizea + E(-“Gzﬂfr;)blig,éé"}= Z{r1z0)
Tlasa)bioss + 2@Pbisoa  + E(Iaﬂ)sz:i 28 = S(mirg) | (38)
Z(zoza)bia.ss + Z(waza)braee, + 2{54)514 23 = Z(nire)

1284 = M1 — biz.aaMy = &13 2aMs — buyasMs (39)

Compuling the exfensions. All except 4 of the arithmetie values for
equation (38) which need to be. Whleulated from the original data have
been worked out previously.¢ Only the values which involve Xy, and its
mean, are additional. “Fhe new values needed are therefore My,
D(z1xa), S(@axs), 2($3Q§) rand 2(z3). The computation of these values
is shown in Table 47, )

All the caicul\tl\bns, including correcting for the means at the end,
are carried oup.just as in Table 45. The figures at the foot of cach
column prqvi‘de the remaining values necessary to write out equatlons '
(38) in fillly ” For convenience in writing these equations, we shall again
use the\abndged notation of by for bya 34, bg for byz 24, ete., remembering,
théver, that b here is a different constant from b, pmwousiy

~O 0 b+ (eby | [ 606.956,—394.15b
' +Z(zor4)ba =Z(x172) -~ +63.20b;=1420
(1) Z(ramelbe+2ad)bs || —394.15b,+676.55b;
+2{xgxg)by =2 (931273) 4+ 11.60by= 1360.60
(IIT) Z(zaxs)bs+Z(xars)bs 63.20b;1-11.60b3
+2@Phy =Tz} | 4-17.20b, =193.20

Solving the equations. The three equations are now to be solved
simultaneously to determine the values for by, b, and by. This can be
done by the usual algebraic processes, but the peculiar symmetrical
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character of the equations, which the attentive reader has probably
aiready noticed, makes it possible to use a8 much shorter method. Since
the saving in clerical labor by the use of this method is quite significant,

it will be shown in jull,
TABLE 47

COMPUTATION OF ADDITIONAL VALUEE 10 DETeEsviNe MuLtirLe REGRESSION
EquarioN, AppING A THIRD INDEPENDENT FACTOR

Ttem Number | Number | Numbear T;ﬁn:;:r N
fgmber of aeres, | of cows, | of men, ‘income, 4 s\
Xy* Xy Xy X+ X1X, AsX,y XXy .\’ \Xi
1 6 1% 2 i 12 30 1924 o
2 22 0 3 83 86 o 419™% 9
3 18 14 4 128 73 56 [ /a0n 16
4 8 6 1 61 ] 8 . VL 1
5 12 1 1 59 12 I &9
6 10 9 1 a0 10 I\ )9 90 1
7 17 8 3 a2 51,18 246 o
5 11 12 2 88 21 24 178 4
9 16 7 2 86 a2 14 172 4
19 23 2 3 76 (o [} 228 )
"
11 7 17 2 oy 14 34 204 4
2 12 15 3 1083 30 45 324 8
13 24 7 4 w0\ 0D 96 28 384 18
14 16 0 P ) To 32 0 140 4
15 9 12 1.0 80 9 12 B0 1
~&
16 11 16 e 113 a3 48 339 9
17 22 2 ¥\ 2 76 44 4 152 4
18 1i e |V 1 74 11 . B 74 3
19 16 AR P 08 82 21 198 4
20 8 R 2 .80 18 30 160 4
Sums.....| zra {177 44 1744 877 401 4030 114,00
Means. .. .| (18.95"] 8.85 2.2 87.2
Correction itey N e e iiraracetaa ek 613.80 $59.40 | 3836.80 o . 80
Correeted sumia. . .. .. .. ..o e 83,20 11.80 | 193.20 17.20

* Qo‘d&fd'by dividing by 10.

\’fhe first step is to set down the ﬁrs_t equation {I) and divide it
through by the coefficient of the first term, Zzf, with the sign changed,
or —606.95 in this case. The resulting derived equation (I'} is set

down just below it: _
)] 606.05b, — 394.15b; +  63.20b, = 14.20
I —by + 0.64939b5 — 0.10413b; = — 0.02340

The next step is to set down the second equation (II). The ﬁr-st
equation (I} is then multiplied by the coefficient of the second term 1n
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the derived equation (I'}, which is +0.64939 in this case, and the
products set down just below equation (II}. These two equations are
added, giving the sum equation (23), which eancels out the first term,
as shown below. The sum eguation is then divided by the coefficient
of its first term, with the sign changed, giving the sccond derived
equation (II'). The second portion of the work now appears as follows:

@)  —30415b, + 676.55bs -+ 1160b, = 136060
(0.64939) (I) 301.15b, — 265.06b; -+ 41045, = {922
(Z2) 420,59, + 52.64b, S 136082
(IT') —by — 0.12518bs= — 3.25680

The final step in the process of elimination'f’s}{) write down equation
(I11), multiply the first equation (I} by tl\e goefficient of the third term
of the first derived equation (1), whicAs —0.10413 in this case, and -
set the products down below equation{ (III) ; multiply the sum equation
(=) by the corresponding coefficient(the second term} from the second
derived equation (117, ~0.125f6:; and set these products down below
the previous equation. Eq\ua%ién (IID) and the two new eguations are
then added, giving an equation (), from which values in both by and
by have been eliminated® This equation is then divided by the co-
efficient of its first §erm, with the sign changed, —4.03 in this case,
and the resulting\ne\w derived equation entered as equation (III). (A
method of chetling each step in these computations is shown in Ap-
pendix 1, Methods of Computation, page 464.) All the computations -
to this';@}ai are:

.,~\\" ()  606.95b; — 304.15b; + 6320, = 1420
AN ) —by + 0.64030b; — 0.10413bg =— 002340
’ () —394.150|+ 676.5505 + 11.60b, = 136060
(0.64939) (I)  394.15by| — 255.96b; -+ 41.04b; = 9,92

Z2 420.50b; + 52.64b, = 1369.82
1y — by —0.12516h, =— 3.25690
(I11) 63.20b, + 11.60bs | + 17.20by = 193.20
(—0.10413) (I) — 63.20b, + 41.04b; | — 6585, =~ 148
(—0.12516) (Z5) — 5264b; | — 6.50h,  =— 17145

(Za) ' 4.03b, 20.27
() - _p, =— 50078

Hl
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It Is now very easy to compute the values of by, by, and b, from the
three derived equations. From equation (IIT'), b, = 5,02078,
Substituting this value in equation (II'), which may be transposed
to read
ba = 3.25690 — 0,12516h, -

we find
bs = 3.25690 — (0.12516)(5.02978)
= 3.25690 — 0.62053 = 2.62737
O\
Then, transposing equation (17}, we find AN

Ny

by = 0.02340 + 0.64939b5 — 0.10413b,, Y

o &
and substituting the values for s and by, U

by = 0.02340 + (170619) — (052375),
we find o\
by = 1.20684

The values of by, b, and by, just eﬁjﬁputed, may next be verified by
substituting them in the last equaﬁ’oh (I11). Equations (I} or (11}
should not be used for this vgriﬁéfztion, since they will not provide a
complete check. Equation {HI) '

K
63.20D5, + 11.60b; + 17.20b4 = 193.20
becomes, when t,lkélx;iawly caleulated values are substituted,

(63.20)(1@)354) T (11.60)(2.62737) + (17.20)(5.02078) = 193.20;

this werke out to
\"“ ™ 76.21 - 30.48 + 86.51 = 193.20
oF .

193.20 = 193.20

This proves the accuracy of all the previous work.

The work just summarized is all that is needed to solve these
three simultaneous equations. In view of the way the terms cancel out
during the second and subsequent steps of the process, the work can I_Je
still further simplified by omitting all entries to the left of the solid
line which has been drawn in through the last set of entries.
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Having caleulated the values of the three b’s, we can calculate o
very readily.

a = Ml - bgMg - b3M3 - b.;awd.
= 87.2 — (1.20584)(13.95) — (2.62737)(8.85) — (5.02078)(2.20)
= 36.06 '

The regression equation for the three variables is t-herefore,\

(%) = 36.06 + 1.20584 (‘%) 4- 2.62737X5 + 502078X,

N

If we clear the fractions, the equation becomes  {™

X = 360.60 4+ 1.20584X, + 26.273?3;'3‘ 4 B0.2978X 4
Using this equation, we may work out\yalues of X; and of z just as
we did previously. (This will be lefjf\'as an exercise for the student.
Is o, for the new estimates largep\or smaller than for the previous
estimates? Why should it be?) 1 by
Interpreting met regressiop-voefficients. Tt should be noted that
though the value of 1.20584}1for’ bia 34, just determined, compares with
the value of 2.13840, for by 3, determined previously, they do not
measure exactly the game thing. The coefficient b 54 shows the aver-
age increase in ’n@}zﬁe for each acre increase in size of farm, with
both the nu_mber}f cows and the number of men remaining unchanged.
The coeﬂiciel\lﬁ.ﬁm_g shows the average inerease in income for each
increase of Orie acre in size, with the number of cows remaining un-
change; ,;‘%ut without making any allowance for differences in the
nuny %ﬁ‘"of men. Apparently a considerable portion of the differences
inniicome which on the earlicr analysis would have becn ascribed
i iEn the additional acreage is shown by this more complete analysis really
) to have been associated with the larger labor force on the greatel
acreages, rather than to the greater acreages themselves. This result
illustrates one property of net regression coefficients in common with
all other correlation results. They aseribe to any particular inde-
pendent variable not only the variation in the dependent variable
which is directly due to that independent variable but also the varia-
tion which is due to such other independent variables correlated with
it as have not been separately considered in the study. In the
same way that acres, taken alone, included part of the effect due t0.
cows, the effect of acres eliminating cows still included part of the

£



EQUATION FOR ANY NUMBER OF INDEPENDENT VARIABLES 203

effect due to men; and even the effect of acres holding constant the
- effect of both cows and men may still include variation due to other
correlated variables, such, for example, ag fertility of the land. These
considerations illustrate the extreme care which is necessary in exami-
nation of the data and the theoretical analysis of the problem before
deciding on the variables to be eorrelated and the caution which must
be employed in interpreting the results,

Determining the regression equation for any number of inde-
pendent variables. The same mathematical prineiple which*Jas
Been used to determine the constants for regression equations ifiyolv-
ing one, two, or three independent wvariables can be extended to
problems involving any number of variables it may be desired to
ewploy. ' ' a\

For four independent variables the equations are; ¢

Z(aa)bizaas  + Z{%22s)bis.24s + Z(@axs)b14.235
+ Z(2g@5)b15.234 %\27@112)

T(29xa)bro.g45 + SEb1s 2as0ONE Z(2a4)b14 236
+ E(x3x5).y15'1.23; = Z(x123)

Z(2oxq)bro.345 + E(@s@)bléms + Z(x)bia.oss
+ Z(za?s)b1s.08e = Z(xy74)

E(ﬂfsxs)blz.545'7{;2@335)5:3.245 + Z(z45)b1s 235
\\—F SEDhisoss = Z(@1s)

(19315 = My — bigladsMz — b1z 265Ms — branasMs — bis.2ssMs  (41)
A\ X

When thigygel of equations is compared with equation (38) for
three indepféhdent variables, it is evident that adding the additional
variable{ X}, has made it necessary to add the additional equation, in
whicthS appears in each of the product terms, and also to add an
Mkﬁﬁona[ term to each of the previous equations, the additional term
incfuding a product summation [such as = (2er;) and 2 (¢s75)] in which
X5 appears, and also the net regression coefficient b5 934. The equa-
tion to compute a has also been extended by adding the term
“— biseseMs” In the same way the equations to be solved to de-
termine the constants for any number of variables can be built up,
if it is remembered that for each variable added a new term must be
added to each of the previous equations and & new equation must be
added, each term added including the new variable in some way.

The products which must be computed for any given set of variables,

(40)
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and the equations which will need to be solved, may be worked out
readily by the use of the following scheme:

Write out the required regression equation {in terms cof deviations
from the mean), as, for example, for six variables:

bora + bazs -+ baxs + bszs 1 bere = 23
Multiply each term through by the coefficient of the first unknown
(that is, by #2) and sum, This gives the first of the required equations:
N\
Z(z)ba + Z(zga)bs + Z(r224)0s + Z(x2ws)bs + Z(wave)s.= Z(xy21)

Then multiply through by the coefficient of the second-fuknown (z3)
and sum. The second equation is, therefore, hy

legra)by + Z(Bby + Z(xer)be + Z(esrs)bs + Brarelbs = Zlasw)

The same process is carried out for the cocffislent of each unknown in
turn, giving five equations to be solvedsgimiultanecusly to determine
the values for the five unknowns. Setfing up thesc equations may be
reduced to a tabular form, as followsy’

EABLE 48

$ : .
Foru ror Workma Ovr tHE EGUaTiONS T0 DERIVE NET REGRESsION CONSTANTI

Independ- Indepeaient varisbles (in deviations from mesns) Dependent
ent ~ : variable

variables x3 \Q\ T %5 xq a7 | £ o
2| by Elenits | Zmob =D
2 Slegnba ) Ziiibs | Zlogrdby = D(rpes)
T4 i B | Zizyroby | Sizhby = Zixz4)
£ Zggrpby | Zizyzby | Z{zezsiby = Zteas)
£ Zlzereiby | Zizazalba | Tlzaze)by =Z{zze
L FQN S(zazn)bs | Zizawrits | Zlzemniby = 2z
@ | Slegrads | Zzazgts | Dizazldy = Tz

A

X

)" The variables to be considered are listed at the head of columns
from the left to right, ending with the dependent variable at the right.
Then the independent variables are entered down the beginning of
the lines at the left in the same order. The cells of the table are then
filled by multiplying the variable at the head of the column by the
variable at the end of the line. These products indicate the values
to be computed (by equations [11] snd [15]), to give the arithmeti
values for the equations, The “b” terms represent, of course, the
net regression coefficients for the particular number of variables eon-
cerned; that is, by would be by, s for two independent variables,



INTERPRETING THE MULTIPLE REGRESSION EQUATION 205

bqo 34 from three independent variables, and so on. The illustration is
carried out to seven independent variables, but the scheme can be
extended to as many as it 1s desired {o consider,

The equation to compute @ s simply the value of the mean of the
dependent variable, minus the produet of the mean of each inde-
pendent variable multiplied by the coefficient for the net regression
of the dependent variable on that independent variable.

As a matter of practical procedure, it is seldom that a problem
is so complicated or that enough observations are available so thab
significant results for each variable will be obtained using ten op\more
variables; and, ordinarily, analyses invelving not more than five vari-
ables are all that will yield stable results. To illustrate some of the
details of the procedure necessary where a large numbek of variables
must be considered, various methods to simplify the(necessary caleu-
lations in earrying through a problem involving a Jlarge number of
observations are presented in Methods of Computation, Appendix 1.

Interpreting the multiple regression eq Ation. The same limita-
tions apply in interpreting regression coefiicients worked out with the
effect of one or more variables held congtant as when only two variables
are considered. Thus for the data sliown in Table 47: there were no
observations with more than 18.e0ws, or 4 men, and none below 60
acres or ahove 240 acres, Forthat reason, there is no basis for using
the regression equation to estimate income beyond those limits. Fur-
thermore; for the extremé ’r}nges where only & few observations were
available—for exampl#, less than 80 acres—the relations could not be
expected to hold ag(well as where there were more observations upen
which to base theCéonclusions. In Chapter 18 a more definite basis
for determinifigthe probable accuracy of such estimates is discussed.
For the p gent the caution’ may be restated, that the results may be
expected{fo hold true only within the range covered by the bulk of
the ‘obéé’r*vations upon which they were based®
~THe meaning of the regression equation

X, = 360.60 4 121X + 26.27X; - 50.30X,

may be made clearer, in publishing correlation results, by working out
the estimated values for a representative variety of conditions. Such a

2 Even within the limits of the range of observations there may be combina-
tions of values of independent variables which are not represented by the data,
pither exactly or even approximately. Estimates for such eombinations will bave
less relisbility than for those combinations which are represented. For a fuller
discussion of this source of unrelisbility, see Chapter 19.
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statement of the conclusions covered by the previous regression equa-
tion would be as follows:

TABLE 49

AvERAGE INcoME oN Fanme Writn Varving Numaers oF Acnrs, Cows, ane Mex
(As indieated by correlation analysis)

100 acres ) 160 peres
Labor
force N\
0 cows 8 cows | 16 cows 0 cows 8 cowy 16 cows
£ N
Dollars Dollars Dollars Dollars 'Do?h-r's | Dolars
lman...... 532 742 9562 * ‘¥ *
2 men * 792 1,003 655 /5N 865 .
Smen...... * » 1,053 705 & 915 1,125

# Omitted because of absence of observations representéng this combination of factors.
9 N

It should be noted in Table 49ythat, according to these results,
increasing the number of men frpiri’i to 2, or from 2 to 3, will add
$50 to income, no matter whethér the farm has 100 acres and 8
cows, or 160 acres and 16 elws. Similarly, adding 8 more cows is
indicated as having the saine effect on income, no matter how large
the farm is or how maf¥ men are employed. But that this conelu-
sion has been reache S 1o proof that it 1s really true of the universe
represented by the original data. Instead, such & conclusion s in-
herent in the lisear equation (35, 36, or 37) which has been used. That
equation neegssarily assumes that an inerease of one unit in any one
independent variable will always be aceompanied by an equal change
in the dépendent variable. Only insofar as the actual facts agree
with{that assumption can they be represented by a linear equation.
.Sl\:lh's’requent chapters (particularly 14 and 21) take up methods of

“\analysis which may be employed when this type of relation is not true,
N\ and the linear cquation is therefore unable to express the facts ade-
quately.

Net regression coefficients, computed from a sample, may vary more*
or less widely from the true values for the universe from which that
sample is drawn. Tests to indicate the reliability of such sample
results are given in Chapter 18. They should always be caleulated .
and considered before generalizing from such sample results.

Summary. This chapter has presented mathematical methods
for determining the constants of a linear regression equation, so that
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changes in one variable may be estimated from changes in two or
more independent variables. Equations so determined afford a more
exact basis for making such estimates than de linear equations
cbtained by any other method. Furthermore, the multiple regression
equation serves to sum up all the evidence of a large number of
observations in a single statement which expresses in condensed form
the extent to which differences in the dependent variable tend to be
associated with differences in each of the other variables, as shown by

the sample, \
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CHAPTER 13

MEASURING ACCURACY OF ESTIMATE AND DEGREE OF
CORRELATION FOR LINEAR MULTIPLE CORRELATION

Standard error of estimate. After working out equaticrm{by which
values of one variable may be estimated from those foi::}.wo or more
independent variables, it is frequently desirable to have Some measure
of how closely such estimates agree with the actualilucs and of how
closely the variation in the dependent variablat 'Ts\associated with the
variation in the several independent variables! Attention has bheen
called in the preceding chapters to the géfputation of the residuals,
z, when the value of a variable is estingefed from that of several others,
Where the estimate is based on severalihdependent variables the stand-
ard deviation of these residuals sfrves as a measure of the closeness
with which the original valucs3nay be estimated or reproduced just
as well as where the estimated§'based on a single variable. Continuing
the same terminology asBéfore, this standard deviation is still called
the “standard error of“estimate.” Thus for the regression equation
for estimating incmﬁe\ﬁ'om known numbers of acres, cows, and men,
the standard erroryof estimate is designated S;.34. The subscripts
“1.234” indicape’that that is the standard error for variable X; when
estimated fromr'the independent variables Xa, Xy, and X,

Wherg(the size of the sample is small in proportion to the number
of varighles involved, the standard deviation of the residuals for the
cages\ihcluded in the sample tends to have a downward hias. That
i3 tends to be smaller than the standard error which would be ob-

\sefvcd if the same constant were computed from large samples drawn
from the same universe.

For that reason it is neceszary to adjust the observed standard
deviation of the vesiduals, o, before it will give an unbiased estimate
of the value of the standard error of estimate in the universe. This
adjustment is:

= na?
8% gy = —Se (42)
n—m

208



STANDARD ERROR OF ESTIMATE - 209

where n = number of sets of observations in the sample,
m = number of constants in the regression equation, ineluding
a and the 's.

(Where the adjusted value for Siz3: exceeds the value of of, the
latter value should be used for the standard error.)

The standard errors for the equations obtained when one, two, and
three independent variables were considered in the farm-income study
in Chapter 12 may be summarized as follows: :

Q"

Independent variablos Obzerved o, 7 m Adjusted st-anda.lld agtor
— AY))
Xag. oo i e 165.15* 20 2 L} =485.15
Xoy Xgoooinonnnnn e 70 .48 20 3 S1an=76.45
Ko, X Xgoooooioiininnn, 66.77 20 4 Sz T4.65

*This value hup not been shown previouely, It is ealeulated from tﬁb.}atn of Chapter 12,

(In this case the correlation between Xy and JQ‘;.is practically zero, so
@, = ¢;. Under the rule given above, Sy g =813} The values tabulated
in the last column illustrate the increase ipfﬁ% reliability of estimate as
additional variables are taken into acéohnt.

So far, the standard errors of estimate (except for simple or two-
variable correlation) have been detérmined by actually working out all
the estimated values, subtracting to get the individual residuals, 2, and
then determining their standard devistion, For linear multiple regres-
sion equations, however, & yiuch simpler process can be used. To com-
pute the standard deviation of the residuals by this process, all that is
required in addition to the values which have been used in computing
the b's is the valie/ Z(z]). The formula is as follows:

) D) — [brass. .. =(Emxe) + biaoa.. .n(EIﬂs)}
83234 %\ " + . binss - (Zriwa)l

n—m

(43)

S;J\krstii;il};ing the values for the regression equation computed with two
h{déf)endent varisbles, pages 193 and 194, the equation becomes
Z(a?) — [br2.3(E212e) + big.2 (Bmas)]

n—3

— .
128 —

In terms of coded values for Xj,
Ras 545520 — (2.1384)(14.20) — (3.2569)(1,360.60)
T 20 — 3

S5 _ [993.50 _ 7.645; 8, 05 = 76.48
10 17
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The result is seen to be identical with the value computed (after
adjustment) by the lengthy process illustrated in Talle 46, on page 196,
of working out all the individual estimates, computing their ctandard
deviation, and then adjusting by equation (42).

Multiple correlation. The standard error of estimate for a mul-
tiple regression equation, just as with simple correlation, measures the
closeness with which the estimated wvalues agree with the original
values. The standard error, however, offers no measure of the pro-
portion of the variation in the dependent factor which can e ex-
plained by, or is associated with, variation in the independertMactor
or factors. For example, in one area the farm income m:ght‘bc twice
as variagble as in another. If two or three inrlepcml(nt"factors such
as those discussed came as near accounting for all +h¢ variation in
incomes in onhe area as in the other, the stan{la.ld airors of estimate
would be the same in hoth cases. There was tmg,mal]y more vari-
ance in income in the one case than in the atlier; therefore with the
same amount left unaccounted for the nhiependent factors would
have been associated with a larger propo?tlon of the original variance,
in the case where it was largest to hepgih with, and would have been
‘relatively more important in thatiease. In simple correlation, the
relative importance of the mdependent factor was measured by the
ratio of the standard deviatiomiof the estimated values to the stand-
ard deviation of the actualwalues, and the name coefficient of correla~
tion was given to thig-xatio. In exactly similar manner, when the
estimates are basedigh Several variables, instead of on one, the rela-
tive importance of,all those variables combined may be measured
by dividing theldtandard deviation of the estimated values by that
of the origina{ ¥alues. This ratio is named the coefficient of multiple
correlation; since it measures the eombined importance of the several
independent factors as a means of explaining the differcnces in the
depedident factor,

Va\ T we use X34 to designate the estimates of X; madc from variables
Xg, X3, and Xy, and use Ry s34, to represent the unadjusted coefficient -
of multiple correlation, the coefficient may be defined:

Xiose) = 01931 + b12.34Xp + b13.24X3 + brg2aXs (44)
Ry g4 = —24 (45)
1

The same short formula which has been shown for computing the
standard error of estimate may be employed to facilitate the computa-
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tion of the coefficient of muitiple correlation, using only values already
involved in equation (43). The equation for computing the coefficient
of correlation by this method is: !

[512.34 coon(Emxg) + bhigas .. n(lexa)}

4 bines . m-n(En12,)
R} "= -
1234 _ . . @) {46)

There is a tendency for the multiple correlation shown by the sample
to be in excess of the correlation existing in the universe from which‘the
sample was drawn, especially where the number of observations idsmall,
or the number of variables large. For that reason the ct)eﬂ‘iclent
Riss...n computed as shown in equation (46), has to be ‘adjusted
before it will give RBj.93 . .. », the ynbiased estimate of tne torrelation
most probably existing in the whole universe. The ad}ustment is:

Rf.zsé coon=1-— (1 - R¥.234 .. u} ~ 1 ) (47)

n—m

m and » have the same meaning for thls e'quatlon as in equation (42},

If the value for B2 comes out a minus quantity, use 0 for R2.

The square of the coefficient of multiple correlation, B, may be
termed the coefficient of mulliple determination.

The same relations holddetween the coefficient of multiple correla~
tion and the standard erroriof estimate in the case of multiple correla~
tion as in the case of,simple correlation. For that reason, one of these
measures may be gomputed from the other, whichever is determined
first, according to\the following equations:

Qs Boa...n)(n—1
.'~'§'er‘.234 coon=1— ( - 23;% )( " ) (48)
<\ - Ross. . n=01(1 —Riosa... n)( 1) (49)

Using equation (48) to compute the values of R from the values of §
previously computed, the multiple coefficients for the three regression
equations previously worked out may be stated in the following different
ways:

1This may be eomptted most conveniently by following the form shown on
pages 467 and 469.
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S i B
Dependent, . Standard | Coefficient | Coeficient
variable Independent yariable(s) error of | of multiple | of multiple
estimate | correlation |determination
Xi{income) | Xs(acres) 165. 15 o 0
Xi(income) | Xq(acres); Xs(cows) 76.45 0. %92 0. 796
Xi(income) | Xa(acres); Xs(cows); Xy(men) 74.65 0. 808 0.806

* Tha value shown here should be that of Fiz. In this ease it happens Lo Le LT N

It is evident that the correlation increases as the standard error
decreases. Here the residual variation in each case is }gﬁing compared
with the same original standard deviation, so that thabnecessarily fol-
lows. Where different studies are being compared“however, such as
two samples with widely different original deviatidns in the dependent
variable, the standard error of estimate would not necessarily decrease
as the correlation increased, since the former 1s an absolufe measure
whereas the latter is a relative measure?)

It is evident from the figures J6st'shown that the coefficient of
multiple correlation, if incorrectly Snterpreted, makes the relationship
seem closer than does the coeffidient of multiple determination (RE2).
It cannot be demonstrated that the coefficient, of multiple determina-
tion will measure in all cages that proportion of the variance in the
dependent factor whiahﬂ Is associated with the independent factors.
Yet it is sufficiently, £10¢ so that, if such a statement is to be made as
“seventy-five per ‘tent of the variance in income was associated with
(or related to) Y@riances in numbers of acres farmed, or cows milked,
and men hifedy” it is more accurate to use the coefficient of multiple
determing.’ginh than to use the coefficient of multiple correlation. The
latter gonld overstate the case. This principle holds true both for
sirr}p}e\correlation {¥) and multiple correlation (R): the square of the
coefficient indicates the proportion of the variance in the dependent

“variables which has heen mathematically accounted for: whereas one

minus the square of the coefficient indicates the proportion which has
not been accounted for?

2 Thig point is of considerable gignificance in certain types of economic prob-
lems, particularly in time-series analysis. For example, taking the first differences
of & series of values frequently tends to make the deviations much larger than by
taking deviations from trend. A study which gives a higher coefficient of corre-
lation for first differences than for deviations from trend may still yicld the less
accurate estimate, as measured by the standard error of estimate.

8 8ee Note 7, Appendix 2. '
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¢

The coeflicient of multiple correlation, Ry 534, ., may also be de-
fined as the simple correlation between the actual X, values and the
X1i234) values estimated from the several independent factors., This
interpretation illustrates the way it sums up the combined relation of
the dependent variable to the several independent variables,

(For the most convenient methods of caleulating the varicus meas-
ures discussed in this ehapter, see Appendix 1, pages 459 to 478.)

Measuring the separate effect of individual variables. In addition
to the measures of the importance of all of the independent variableg
combined, it is sometimes desirable to have measures of the importance
of each of the individual variables {aken separately, whilegsimul-
taneously allowing for the variation associated with remajniiﬁg inde-
pendent variables, There are two different types of thesedmeasures:
the coefficient of partial correlation and the “beta” coa)ﬁcwﬂt‘

Partial correlation. Coefficients of partial correlifion serve to de-
termine the correlation between the dependent\factor and each of
the several independent factors, while eliminaﬁ}g any (linear) tend-
ency of the remaining independent factors}tﬁ obscure the relation.
Thus in the problem where income wasg gorrelated with numbers of
acres, cows, and men, the partial correlation of income with acres,
while holding constant cows and.,'meh, indicates what the average
correlation would probably be Ijqfween scres and income in samples
of farms in which all the farfils in each sample had the same number
of cows and the same nu;n;be\‘ of men.

If the data we haye*just been discussing were classified into groups
which had the same fiumber of cows and men in each group, and the
correlation of thaifiéome and acres for the farme in each group was

calculated sepamtely, that would give & series of values for the corre-
lation betwckn sacres and income for series of groups in each of which
there wasm\s variation in cows or men. If a weighted average of this

b Dzshusmon of the coefficient of part correlation {which was covered on pages
185 a.l‘,&d' 183 of the first edition of this book) has been dropped from this edition.
It is*defined by the formula . .

b’lﬂ.ﬂflgﬂ
% = = (61)
1 o asos + 031 — Fios)

Little practical use has been found for this coefficient, except that it does provide
a maximum value for the coefficient of partial correlation. Aithough its formal
interpretation was correct as given previously, it seems to provide insufficient in-
formation to justify its detailed presentation, However, its derivation is still given

in Note 9, Appendix 2, as before.
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series of correlations was then caleulated,® it would correspond to the
partial correlation of income with acres, while holding cows and men
constant (rysz4). A similar interpretation can be made for the other
two partial correlation coefficients. Even in problems (such as the.
present one) where the number of observations is not sufficient to per-
mit of many such subgroups being formed, the partial correlation
coefficient indicates about what such an average corrclation in selected
subgroups would be, if computed from a larger sample drawn from
the same universe. '

Any group of independent variables may serve to explain&ome, but
not all, of the variation in a dependent variable. If ¢, additional
1ndependent variable is added, it may account for par{ of it variation
left unexplained by the factors previously conmd(,rg,d The coefficient
of partial correlation may be defined as a meaqme of the extent to
which that part of the variation in the dependent variable whieh was
not explained by the other independent fa¢tdrs can be explained by
the addition of the new factor. For example, in the farm-income
problem, considering only acres and ccv\s the correlation was Ry 95 =
0.892. When acres, cows, and men weve considered, the correlation was
Ry934 = 0.898. Squaring both, vaiues shows that, whereas the twe
variables explain 79.6 per cent of the variance in inecome, the three
variables explain 80.6 per cetitt Whereas 20.4 per cent of the variance
is left to be explained when the two variables are congidered, only
19.4 per cent is left tg besexplained when three are considered. Adding
the additional variable has increased the variance which can be ex-
plained by thesdifference between these two figures, or 1.0 per cent
(204 ~— 19.4 per-cent). If the importance of this inerease is determined
by compa{iflg it to the variance left unexplained before the new

vanab\e was added, we find that 51{%, or 4.90 per cent of the variance

N\
leff Wmexplained by aeres and cows, has now been found to have been

" aspociated with differences in numbers of men. Taking its square roob

Jgives the coefficient of partial correlation, 0.221,

The coeflicient is designated = 714,23, Sinee it shows the partial correla-
tion between X; and X, after X5 and X, had been taken into account. _
Asg is mdlc_ated in the discussion, it may be computed by the formula ®

72, 03 = (1 — BY 55) —_‘(1 — 3 024)
‘ 1 — Big

5 The calculation of the average of n series of correlatjon coefficients would in-
volve the use of Fisher's z-transformation. '

8 This is different from the formuls customarily piven. See Note 7, Appendix 2
for its derivation,
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For purposes of computation, this formula may be simplified to

1 — F? o34

Fizs =1 - TR (50)

If it is desired to compute coefficients of partial correlation for the
other independent variables, acres and cows, the corresponding formulas

are’” -
-?:13 9s = 1 _ 1 - Rl.234
' 1 — Ria
1 — Rf 254
feas=1- 1 — Rig, .\\
It should be noticed that, although the numerator of the, I‘ractlon i3
the same in each case, the denominator is different. Thls is a pecu-
liarity of coefficients of partial correlatlon—theymmeasure the im-
portance of each of the several variables by deteérhining how much it
reduces the variation after all the other vamb\e»s except it are taken
tnto account. R&

If we work out the new multlple COI'I‘E"l&thIlS necessary,® Rp.g4 and
R34, and substitute them in the equatlons given just above, the whole
get of coefficients of partial correlation'and partial determination for the
farm-income problem works out as Jollows:

M — 0.806

2 g\ 2 T YOV

”3‘2{2\1 1— 0458~ 0%
N\ 1 — 0.806

LB T Tem T

7 Equation (50{.and these following equations will give valuea for the partial
regression cocficients, which will differ slightly from those computed by the clas-
sical equafi \ng'used by Yule, and then adjusted by equation (47). In view of the
definition\of the adjusted partaal correlation coefficient just given, however, it is
behew\d that this method of computation directly from the adjusted values, By.234
affd\Rv/za, is sufficiently aceurate for all practical purposes,

\3 The two new coefficients of multiple correlation are obtained by rearranging
the arithmetic values previously eomputed so 83 to give the necessary regression
coefficients, and then determining the value of R by equations (46) and (47). The
two new sets of equations are: '

To determine R]__g.-;

CaBYorzs + (Srbue = Sxazg)

: Crazdbies + Eehbuz = Crazd .

- Bimilarly for 1.3 .
Cadibisg + (Sraxdbus = (Zziza)
Crzdbias + Ezbus = Exwd
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RevaTive IMPORTANCE OF INDIvIDUAL FacToRs AFFEcTING INcOME, A8 INDICATED
8Y CorrriciEnts oF ParTiaL CoRRELATION

Coefficient of { Reduetion in

Factors already Factor partial unexplained
consgidered added corrclation variance

(Przas ete} | (Fasy eto)

Cows (X}, men (X4)............... Acres (X2) 0.27 0.072
Acres (Xo), men (X). ..o ... Cows (X3) 0.80 Q.642
Acres (Xg), cows (Xa).. ..., Men (X,) 0.22 0.049

N

‘When income was correlated with acres alone, therg’ Was no correla-
tion at all. (Before adjusting for the numbﬁr of observations,
g = 0.01.) Yet the partial correlation of 1npqme Wwith acres, while
holding constant the variation associated withncows and men, hag just
been seen to be 0.27. Although this is nebhigh, it is certainly more
than no correlation at all. Furthermore\\even though the correlation
of income with cows alone is 0.64, the\eorrelatmn with both acres and
cows is (.80,

On the surface of the date there appears to be no relation between
acres and income, since thes positive relation of acres o income is
hidden. Acres are negatively correlated with cows to a sufficient
extent so that the decreased income with decreased number of cows
offsets the inereases with more acres. Only when the number of cows
is allowed for ea t\he influence of acres be seen.

It is evidemb,that a mere surface examination of a sct of data
cannot revealAvhich independent factors are important and which are
unimportaty” A variable which shows no ecorrelation with the de-
pendegt_’variable may yet show signifieant correlation after the relation
to other variables has been allowed for.

Sdnvestigators sometimes think they are doing “research” when they
Ve Sfudy the relation of a given variable, say the price of a commodity,
“to & number of other factors, discard all those factors that show no
correlation with price, and seleet out for further study by multiple
correlation the factors that show the highest simple correlation with
the price. As the preceding discussion shows, that procedure may
result in dlscardmg factors which would show a truly important rela-
tion to price after the effect of other associated factors had been
allowed for. A careful, logical examination of the problem, the selee-
tion of the factors fo be considered on the basis of these quahtatne
considerations, and then preliminary examination of all the inter-
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ecrrelations among the selected independent factors will provide more
trustworthy results. (See Chapter 24 for a more detailed discussion
of the places of qualitative and guantitative analysis in such studies.)
The test whether a given independent variable may really be
related to the dependent variable, even if it shows no apparent corre-
lation, is whether that independent variable is correlated with other
independent variables, which in turn are correlated with the dependent.
Thus in the example just discussed, although acres showed no correla-
tion with income, they did show significant correlation with cows.
If acres had had no correlation with either income, cows, or meén\
would have been impossible for acres to have correlation with ifigome
even after the relation to cows and men was allowed for. o<\~
“Beta” coefficients. The importance of individual Yggiﬁbles may
also be compared by their net regression coefficients. The size of the
regression coefficients, however, varies with the unﬁa‘ in which each
variable is stated, They may be made more comparable by expressing
each variable in terms of its own standard ngQ'aj:ion, using the “beta”
coefficients mentioned in Chapter 8. In terms/of betas, the regression

S J

equation for four variables would be A\

X X & X,
== fpa =+ Bigizd ';f + Bra.2z : +a

71 b .

Henee the partial betas mag bé defined |
g i.. 3
\ S Brz.as = bi12.34 2 (52)

a1

A&/
For the pr:aQ'Ie’m we have been considering, the betas may be caleu-

lated verwm’dily:
O B1s.3a = biags = = 1.2058 (ﬁl—) = 0.402
N : o 16.52

. 5.82
ﬂ13.24 = 513_24;3 = 2.6274 ('“1*6—5—2) = (.926

Q
P 0.927
Bra2s = !?14.23;1 = 5.0208 (ﬁé) = 0282

TI¢ the relative importance of each of the different factors, as
judged by the two different types of individual measurement, 1s
compared, the relstions are:
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Errsrive IMPorTANCE OF INDIVIDUAL FacTore AFrEcTiNg Ixcows, as Inpicamen
Y Two DirFFEreNT COEFFICIENTS )

Coefficients Beta
Independent of partial -
factor Factors held constant correlation coefficients
(Fiz.30) Pro
Acres (Xo)............. . Cows {X3), men (X,) 0.27 0,402
Cows (X5 vnoonn . Acres (Xy), men (X,) 0.80 5.926
Men (Xg9............... Acres (X3), cows (X3) 0.22 \~\0.282

£\

It is evident from this comparison that, alt-hm{;;if’%he exact values
differ for the two sets of measures, the rank of thé*threc variables in
order of importance is the same and the relative’ s\zes are comparable?
This does not always hold true, owing to t-h\e‘mathematieal differences
in the meaning of the two sets, 4D

Besides the coefficients which haye heen discussed, which measure
either the total relative importance 604ll the independent variables or
the importance of each one sepérately, it is somefimes desirable
to measure the correlation betv(géri one variabie and a group of others,
after eliminating from the dépendent variable that part of its variation
imputed (by the analysis]™o a single one of the independent variables.
The problem may be’gtz?ted as follows:

Where Ry 534 1A€astures the relation between X, and Xy, X3, Xu
according to the('segression equation (36), the problem stated is to
determine the, {correlation between (X; — byg34X5) and the two re-
maining independent variables, aceording to the equation

®) .
';\\" (X1 — b12.54X5) = 01234 + br3.0eXs + branaXs

..\’i‘.ﬁis could be determined by actually earrying out the operations

\ixjdicated, but it can be much more readily computed by use of the -
formula 0

Multiple correlation

squared of - o3(1 — szad)

ST 5 (53)
(% = biz.saXy) g 2b Taywg/n) + ble.sach
with X3 and X, oy 12.84(Z4122/7) + b1z

® One other type of measure of individual importance, the coefficient of separate
determination, is discussed in Note 11, Appendix 2.

*08ee Note 12, Appendix 2, for derivation of this equation.
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An illustration of the type of problem to which this method may be
applied can be drawn from the field of price analysis. If X, in the case
illustrated above were an index of price level, X; the price of some com-
modity, and X5 and X other factors affecting price, such as production
and storage stocks, it might be desired to determine not only how
closely the price of the commodity was related to all the factors, in-
cluding the priee index, but also how closely it was related to the re-
maining factors after the variations in price found to be sssociated
with changes in price level were removed from it. Formula (53) would
enable this determination to be made. .

Reliability of results from a sample. All the coefficients presénted
in this ehapter are subject to fluctuations of sampling just as are
simpler coefficients. A later chapter (Chapter 18) discuSsés the extent
of these fluctuations with various sizes of samples andrgives methods
of cstimating how far the coefficients from a given random sample
may miss the true values of the coefficient in t\hg universe from which
the sample was drawn. O

Summary., This chapter has shown that the accuracy of & re-
gression equation for estimating one }raliiable from two or more others
may be measured by the standard error of estimate. The extent to
which variation in the dependént ‘variable is associated with the
variation in the several indepéndent variables may be measured by
the coefficient of multipleleorrelation, or, with respect to variance,
by the coefficient of multiple determination. The relative importance
of each of the independent variables may be measured (a) by the co-
efficient of partial gorrelation, relative to the variation remaining after
the effects of the’sther variables have first been removed, or (b) by
the heta coeffi¢ients, which reduce the net regression coeﬁicien.ts to a
comparab{'e“ﬁasis. Tinally, & method is provided for measurmg the
proportion of the variation in the dependent variable which is ex-
plaindble by a group of independent variables, after eliminating from
Ahe ﬁ‘ependent variable that portion of its variability which has been
Found to be associated with another independent factor.



CHAPTER 14

DETERMINING THE WAY ONE VARIABLE CHANGES WHEN
TW(0 OR MORE OTHER VARIABLES CHANGE: (4) USING
CURVILINEAR REGRESSIONS Q.

The digcussion of muitiple correlation to this point has\'lﬁ‘eéh limited
to linear relationships—relations where the change in ‘#he dependent
variable accompanying changes in each independents variable was
assumed to be of exactly the same amount, nodmatter how large or
how small the independent variable hecame. «Thais in the farm income
example, it was assumed that each additiensl cow would be accom-
panied by the same inereage in income, {&matter whether it was the
first, the tenth, or the thirtieth. Similaily, cach additional acre in crops
or each additional man employed Was assumed to be accompanted
by an identical contribution to¢thé income, no matter how large or
how small the business alraajd}? ‘was. It is quite cvident that such -
an enalysis makes no provision for there being an optimum size
of operation for given &ircumstances or for differences in the con-
tributions of differenf.siumbers of units. In this particular case, it
assumes that thel:eis no such thing as the principle of diminishing
returns. Such an-analysis might therefore fail cntirely to reveal the
proper size of" productive unit, or the number of each of the several
elements to Be employed to yield maximum returns.

In Qﬁnv other types of problems for which multiple correlation
a-nalyﬁs?ls might be used, limitation of the analysis to linear relations

_would seriously restrict its value or prevent its use altogether. In
¢ desling with the effect of weather upon erop yields, several variable
weather factors are usually concerned. There may be an optimum
point for growth, with respect to both temperature and precipitation,
with values either above or below the optimum tending to produce
lower yields. Linear regressions are obviously unfitted to express
such relations, In problems such as these, and many others which
might be enumerated, determination of the exact curvilinear relation
between independent and dependent, variable, while simultaneousty
eliminating the effect of other factors which also affect the dependent
variable, is the most important feature in the investigation, Unless
220
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the curve itself can-be determined, the other conclusions are of little
value.

The problem in its simplest outlines may be stated as follows:
Given a series of paired observations of the values of a dependent
variable Xy and two or more independent variables X,, X3, X,, etc.,
required to find the change in X, accompanying the changes in X5, X3,
and X, in turn, while holding the remaining independent factors con-
stant, so that for any given values of X,, X5, and X, etc., values may
be estimated for X, according to the regression equation

Xy = + LX) + f5(Xa) + faX) +ete. (54

The expression “fo (X 5)” is used here simply as a perfectly generatl term
meaning any regular change in X, with given changes in &5} whether
deseribable by a straight line or a curve. The equationds@ead “X, is a
Function of X, plus a function of X5,” ete.

The several partial {or ‘net”) regression curyes may be deter-
mined either by the use of definite mathematica} expressions, one for
each independent variable, with the cohs@aﬁ% all determined simul-
tancously just as in linear multiple gciljre?ation; ar by a method
known as “successive graphic approxipiation,” which involves no prior
assumptions as to the shapes of the gltrwes.

~ ) §

Multiple Regression Cuf'ves Mathematically Determined

In using definite mathefeatical functions, it is necessary to express
the curvilinear relatioxgs\b\y simple mathematical curves of some type,
so that the constantg\for the curves may be determined by methods
similar to those glteady presented. If simple parabolas were usec_i,
involving only the first and second powers of each independent vari-
able, equatit{xi {54) could be expressed

Xy = avkbsXs + by (X3) + 5y X + by (X3) + b Xy + by (XD (55)
ngej':e\r,'t-his type of parabola is not very flexible, and in practice it
fits\bat very few actual eurves. If the more flexible cubic parabola
were employed, involving the first, second, and third powers of each
independent variable, the equation would be

Xy = a + by(Xz) + ber(XB) + byr(XD) + ba(Xa) + b (X3)
- by (X3) + ba(Xs) + bar (XD + ban(XD {(56)
This last equation for three independent variables involvgs 10 constants
and increases the error in their determination accordingly, and the
clerical labor of dealing with the squared and cubed values would

N\
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be large {unless they were coded}. Even then, it offers no guar-
antee that the curves for each funection would truly represent the real
relationship. The curves corresponding to the three functions in equa-
tion (54) would be:

F2(X2) = boXo + b (X3) + byr(XH)
f3(X3) = baXs + ba(X3) + by (X3)

faX) = byXy + be (X3) + by (XD A

Whether or not these curves would actually be a good fit {o, the true
funetions could not be told beforehand, for the problem is\'ﬁo%‘ to find
the curves expressing the relation between X, and each\ef the other
variables according to the apparent relation but &ccprding te the
underlying relation, which may become apparent anly when the differ-
ences in X, associated with differences in the ather factors have been
eliminated. Each of the independent factorg'thay be correlated with
the other independent factors to a greate ‘@ less degree. Thus in the
problem which follows, correlating Xagith X, r = -+ 0.07; X, with
X,, 0.00; and X, with X,, — 0.67. Thé last corrclation is sufficient to
tend to obscure the relations. Whe}j ‘we make a dot chart showing the
apparent relation between X, and X3, we cannot tell how much of the
observed differences in X, atevdue to the differences in X4 associated
with the differences in Xg\ " For that reason we cannot be sure what
type of eurve would, trilly represent the differences in Xy with differ-
ences in X5 after al\[‘owances had been made for these other factors.
Even though thesapparent relation might indicate that a straight line
or some type o:f.\parabola would fit, there would he no guarantee that
this W{Juld..’gﬁly represent the net functional relationship. The suc-
cessive abiprbximation method, which makes no rigid assumption as to

the t;yipte of curve, is therefore to be preferred.!

N
i

/ Multiple Regression Curves by Successive Approximations

The general method of determining partial regression curves by the
successive approximation method may be outlined as follows:

The conditions to be imposed on the shape of each curve, in view
of the logical nature of the relations, are first thought through and
stated. 'This procedure, for each curve, is similar to thab described
on page 109 of Chapter 6.

1The determination of multiple regression curves by fitting definite mathe-
matical equations is dealt with at more length in Chapter 22, on pages 3% to 401.



REGRESSION CURVES BY SUCCESSIVE APPROXIMATIONS 223

The linear partial regressions are next computed. Then the de-
pendent variable is adjusted for the deviations from the means of all
independent variables except one, and a correlation chart, or dot chart,
is construeted between these adjusted values and that independent
variable. This provides the basis for drawing in the first approxima-
tion curve for the net regression of the dependent variable on that
independent variable, within the limitations of the conditions stated.
The dependent variable is then corrected for all except the next in-
dependent variable, the corrected values plotted against the val(es
of that variable, and the first approximation eurve determined, with
respect to that variable. This process is ecarried out for 'ea&éh".i\nde-

Raintall
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T'a, 32, Ramie{l, temperature, and corn yields in the Corn Belt, 1800 to 1927,

pendent Qnable in turn, yielding a complete set of ﬁrst Approxi-
matlons \to the net regression curves. These curves are then used as
,basi‘s for correcting the dependent factor for the approximate curvi-
Hthf' effect of all independent variables except one, leaving out each
in turn; and second approximation eurves are determined by plotting
these corrected values against the values of each independent variable
in turn. New ecorrections are made from these curves, and the process
is continued until no further change in the several regression curves
iz indicated,
The process of determining net curvilinear regressions by the suc-
cessive graphic approximation method may be illustrated by the data
shown in Table 50. These data show, for a period of 38 years, the aver-
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age rainfall during June, July, and August, for nine weather stations
scattered through the Corn Belt. This precipitation has been desig-
nated as variable X3 The average temperature during the same
months, at the same stations, has been designated as X;. The average
yield of corn per acre, in the six leading Corn Belt states, is shown as
X;—the variable whose fluctuations are to be explained, so far as
possible, by the other factors,

It is evident from the table that there has been a marked upward
trend in corn yield during this period, although there has not<beén a
similar trend in rainfall or temperature. Plotting cach dng of the
three factors, X3, X4, and X, as shown in Figure 32, we(hotice, how-
ever, that there have been marked though irregular ldnt* time cycles
in rainfall and temperature during the period. To i certain cxtent
the upward swing in yields has agreed with thie high point of the
rainfall eycles, particularly from 1919 to 1924\ It is not safe, there-
fore, to fit a long-time trend to yield and, t@ydssume that in removing
that trend we are merely taking out th} effects of such faetors as
better varieties, improved methods QP tillage, or concentration of
aereage in the more fertile sectiohs.” Since there iz some associa-
tion between rainfall and time,af least over considerable periods, in
eliminating all the variation\ ‘associated with time we might be
eliminating a part of the/\ariation which really reflected differences
in rainfall. Accordingly We may make time itself one of the factors
in the multiple cop%l tion and asecribe to time only that part of
the long-time chanige in yields which is not associated with differences
in rainfall or gn“temperature. Hach year, numbered from ¢ up, is
therefore ingluded as one of the factors in the multiple correlation®
and is dedignated as variable X a.

Befote starting the statistical process, we must state the conditions
to\bes ohserved in fitting & eurve to each function. For rainfall, the
%onkiderations are quite similar to those discussed in Chapter 8 for
irrigation water applied, so we shall use the same conditions as stated
there (page 152).

For temperature, the range of possible relations might be wider.
There may be certain temperatures to which the plant does not respond
and then certain higher temperatures which produce a marked response.
Again, if the temperature is too high, a marked reduction in yield

. 2 Note the parallel treatment of changes in time as an independent factor in
R. A. Fisher, Statistical Methods for Research Workers, second edition, p. 174
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TABLE 50

Yierp oF ComrxN, RAINFALL, AND TEMPERATURE TN S LEapmg STaTES; AND
Yizrp Estovaten BY Linsar Regressions oN Tuees Facross *

Time Rainfall, | Tempera- Yield, | Estimated | Difference,
Year X * t in inches, | ture,in de- { in bushels, yield, X, - X
! X3 grees, X, X X z
1300 0 9.6 74.8 24.5 28.4 w39
1801 i 12.9 71.5 33.7 31.6 2.1
1892 2 9.0 74.2 27.9 29.1 102800
1593 3 8.7 74.3 97.5 28.5 -1,0
1894 4 6.8 75.8 21.7 27.0 —63
1895 5 12.5 74.1 31.9 30,8 |10
1896 6 13.0 74.1 36.8 3.4, 5.4
1807 7 10.1 74.0 29.9 300N P —0.1
1898 8 10.1 75.0 30.2 209 0.5
1899 9 10.1 75.2 32.0 (29’8 2.2
1900 10 10.8 75.7 3.0 _{\‘30.1 3.9
1901 11 7.8 78.4 1945 276 -8.1
1902 12 16.2 72.6 360 34.6 1.4
1903 13 14.1 72.0 302 33.8 —3.6
1904 14 10.6 71.9 | \32.4 32.1 0.3
1905 15 10.0 74.0 PN 36.4 3.1 5.3
1006 16 11.5 78.7%8 |  86.9 32.2 4.7
1907 17 13.6 730" 3.5 33.7 —2.2
1908 18 12.1 .73 30.5 32.9 —2.4
1909 19 12.0 {\74.6 32.3 32.5 0.2
1916 20 9,3.z"'~\ 73.8 34.9 31.6 3.3
1911 21 7,‘7\ 76.2 30.1 29.8 0.3
1012 22 0 73.2 36.9 33.0 3.9
1913 23 6.9 77.6 26.8 29.1 ~2.3
1914 24 N o5 76.9 30.5 31.0 -0.5
1915 25" 16.5 69.0 33.3 37.7 4.4
1616 %) 9.3 75.3 20.7 31.8 -2.1
1917 Q’( 9.4 72.8 35.0 33.0 2.0
1918 oy " 28 8.7 76.2 29.9 a1.4 —1.5
1900 20 2.5 76.0 35.2 32.1 3.1
120" | s0 11.6 72.9 38.3 34.6 3.7
\1921 at 12.1 76.9 35.2 33.4 1.8
1922 32 8.0 75.0 35.5 32.1 3.4
1923 33 10.7 74.8 36.7 33.8 2.9
1924 34 13.9 72.6 26.8 36.5 —9.7
1926 35 11.3 75.3 38.0 3¢.2 3.8
1926 36 11.6 74.1 31.7 35.0 -3.3
1027 a7 10.4 71.0 32.6 35.7 -3.1

tbe Relation of Weather to the Produstion and Price ?E
n, Cornell University, March, 1928, The mx

nnd Ohio.

* Data from E. (&, Misner, Studies of telat
Ferm Produets [ Corn. Mimeographed Publll:‘.&tlo
states are Iows, Ilinois, Nebraaka, Missour, Indiana,
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might be produced.® These considerations lead to the following condi-
tions for the temperature curve:

1. Tt might rise none at all or slowly in the lower range, then
more steeply, then taper off until a maximum is reached.

2. It might decline after the maximum, gradually or sharply,
but would have only one maximum,

3. It might have two points of inflection, one where it started to
rise rapidly, the second where it starts to rise less rapidly.

N\
With respect to the third eurve, that for trend, there is noNa priori

reason to expect any given shape during the perlod concerneéd, exeept
that there be no sudden changes from year to ycay.s:\i\ccordingly,
the only condition imposed is that the trend have g@~smooth, gradunal
change, with no sharp inflections, ¢ ¢
Ag a preliminary step before starting to defermine the net regres-
gion eurves, we may examine the apparent relation of yield to rainfall,
before the other faetors (temperature?and time) are faken into
account. ' ,\ _
The apparent relation between @ainfall (X,) and yield (Xy) is
indieated in Figure 33, by a dot chart of the relation, with the average
vield indicated for each group.dfiyears of similar rainfall. The broken
 line connecting these averageindicates that there is a marked curvilin-
ear relation, the lower indfeases in rainfall being accompanied by much
greater increases in yielh than the higher inereases. Fitting a straight
regression line to these two variables, the relation is found to be
_ %, X, = 2355 + 0.776X 4
This fine i§/actordingly drawn in on the chart, eutting across the curve
indicated.by the line of group averages. i
Although Figure 33 shows yields to be definitely associated with
differénces’ in rainfall, it must be noted that rainfall is significantly
(“oorrelated with X, temperature, the correlation being 744 = — 0.67,
and is also slightly correlated with time. To some exfent, then, the
changes in yield shown in the figure to be associated with differences in
rainfall may really be due fo concomifant differcnces in the other two

% More elaberate investigations, experimental and statistical, have shown that
the _eﬁect of both temperature and rainfall vary at differcnt times of the scason,
and especially at certain eritical times in the growth of the plant, such as at tas-
seling. Also, the partienlar combination of meisture and heat may be important.
These possibilities will be referred to subsequently, in connection with more refined
and elaborate methods of analysis, : ' . :
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factors. The éxtent to which these other two factors may have influ-
enced the relations ¢an be judged by determining the muitiple correla-
tion of X; with all three factors, and then noting how the regression of
X, on X; alone (b;3), which has just been shown plotted in the figure,
compares with the net regression of X, on X5 (byg4) determined while
simultancously holding constant the linear effects of X5 and X;. The
first step toward determining the net regression curve, therefore, is
to determine the muitiple regression equation and the coefficient of
multiple correlation, sccording to*the methods outlined in Chapter,s\
12 and 13. '

N
COrnX\"ieId ; : < \)
Bus‘}ﬁ:s per Acre . \ \
- ! | | }"

35

30

&5 o )\.{.f}?e of orverages .." S ‘ T

20 — &N° — -

I S IO

BI_ 8 /No i2 [E3 1 18
~EsRainfollin inches
Fic. 33. Apparent relation<of. corn yields to rainfall (with simple and net regres-
' N\ gion lines),
' “J
The regressji‘ein equation workz out to be
N\

X1 = 53.505 + 0.146X; + 0.587X5 — 0.405X,

and t,h@ f}lultiple correlation, adjusted for the number of observations
a;@‘cénsﬁants, R 034, 15 0494

4 Jsing units of years of time, inches of ratnfall in tenths, and degrees of t:em—
perature in tenths, and corn yields in tenth bushels, we find the normal equations
for the data of Table 50 to be:

4,569.50b12 24 + 2480001304 — 8.50bi 0 = 6,813.00
248 00bye 1 + 18,980.06b13.04 — 10,279.41by.05 = 14,726.07
85012 . ~ 10,279.41b15.84 + 12,408.86by o = —8,442.64

no} = 70,455.03; o1 = 43.0; or 4.3 bushels.
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This result shows that when the net linear influence of trend and
of temperature is allowed for, yield increases on the average only
0.54 bushel for each increase of one inch in rainfall, whereasz, before
these ather factors were taken into account, yield appeared to increase
0.78 bushel with each additional inch of rainfall, The difference
between the simple regression and the net regression may be shown
by plotting the latter as well in Figure 33.° It is then quite apparent
how different are the relations ag shown by the two lines.

Considering the effect of the other factors reduces the lingarregres-
sion of X, on Xg by nearly §. If other factors have so mudh effect
on the average linear relation, they may have an even grg\ﬁtei" effeet on
the shape of the curve. The net regression line in Figure’33 shows the
average change in the values of X, with different €alyes of X, after
the differences in X, and X are taken into aceountl” The average yield
for different groups according to rainfall, ‘conngeted by the broken line,
shows definitely that the simple regression dine is but a poor indication
of the underlying relation between X i X4 The net (or partial)
regression line may be an equally pedt ihdieation of the relation with
the other factors held constant. “{Ha’rj is needed is some way of seeing
the differences in the individual yaltes of X, for different values of X3,
after the variation due to X, and X, has been eliminated. It is impos-
sible to do this entirely, for we have as yet no measure of the curvilinent
relation of X, to X, #x X5 But we do have our net regression -
coefficients, which jpdasure the linear regression of X, on these other
factors, and by ugi}@ them we ean eliminate from X, that part of its
variation assopigtﬁd with the linear effeets of X, and X, and then see
if that givesdis*any clearer pieture of the curvilinear relation between
X, and X5 '

Deferntining the “first approximation” met regression curves.
Hayi;;}g determined the linear multiple regression equation, we next

y \ ¥ The net regression line, showing the change in yield with changes in rainfall
while holding constant time and temperature, may be computed from the multiple
regression equation by substituting the average values for time and for temperature
for X3 and X4, and then working out the new constant. For the data given in Table
&0, the averages are:

My = 18.500; M; = 10.784; M, = 74.276; M, = 31.916

If we substitute the means of Xa and X, for their values in the multiple regrassion
equation, that equation becomes:

Xy = 53.505 + (0.146)(18.500) + 0.537X; — (0.405)(74.276) = 26.124 + 0.537Xs

The net regression line in Figure 33 is therefore drawn in from this last equation.
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calculate the estimated value of X, for each one of the 38 observations,
by substituting the eorresponding values of Xg, X3, and X, in the
equation. Hach of the estimated values (X 1) is then subtracted from
the actual value (X,), giving the residual values (z), as also shown in
Table 50.

The next step is to construct a scatter diagram to show the relation
between variations in X3 and the variation in X, after that associated
with X, and X, has been eliminated. To do that, the net regressml\
line for X; on X; is plotted on Figure 34, just as it had been on
Figure 33.¢ »{ b\

The residuals for each observation, from Table 50, are then ‘plotted
on the chart, with their X5 value for abscissa and with t-he:vélue of z as
ordinate from the net regression line as zero base. Térytheé first ob-
servation, X3 = 9.6 and z = — 3.9, The ordinategf\the point on the
net regression line correspending to X = 9.6 is 318, and the dot for
this observation is correspondingly plotted 39§10W3r than that, st
274. For the second observation, X3 = 12,9 And z =+ 2.1. The ordi-
nate of the point on the regression line correspondmg to X =129 is
33.1; so the dot for this observation is plotted at 33.1 + 2.1, or 352,
&fter the corresponding operation Jins been carried out for all the
observations, the figure agpears. ass shown in Flgure 347

If Figure 34 is compared with Figure 83, it is readily seen that the
seatter of the dots has begn\*educed This will always be true when
the other variables show, any 81§111ﬁcant relation to the dependent
factor; that is, when B}.osq exceeds 713, The scatter is reduced because

AS

€T plot the lifie)all that is necessary is to take the equation of the line to be
used {(see prem'\uu:.‘ﬁ*.footnote)

O Xy = 26.124 + 0.537X;

al
¢

and substitute any two convenient values for X3, say 6 and 16,
For X3 = 6, X1 = 26.124 4 (0.537)(6) =29.35
For X3 = 16, X1 = 26,124 + (0.537)(16) = 34.71

With these two sets of coordinates, the line is then drawn in with a atraight edge
through the points indicated.

7 'fglknle simplest way of plotting the individual observations is to use a scale,
which can be slid along the regression line as zero. The mlue:s of z are then p]at?ed
directly as vertical deviations from the points on the regression line cn{'respondmg
to the particular values of the independent variable considered, a3 X3 in the pres-

ent case.
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- that part of the variation in X, which can be expressed as net linear
functions of X, and X has now been eliminated.®
Consideration of Figure 34 can be facilitated by computing the
means of the ordinates corresponding to the values of X3 falling within
convenient intervals. These can be obtained by simply averaging
together the z values for each selected group of valucs of Xj and
plotting those averages as deviations from the regression line, just as
the individual deviations were plotted previously. The necessary
averages are as shown in Table 51. O
TABLE 51 \' \:.\
AVERAGE VaLure oF z, ForR CORRESPONDING X:g «,}-"ALUES

" . ¥

X3 values Number of cases Average qf{{(x Average of z
Under 8.0 ' 4 LN30 —3.85
8.0- 9.9 10 918 +0.16
10.6-10.9 3 AN 10,35 +1.48
11.0-11.9 5 NY 1140 +2.56
12.0~13.9 8 o\ q 12.76 —0.52
14.0 and over 3 LN 15.60 ~2.20

. These averages, when ﬁiot-t-ed the same as the individual observa-
tions and connected bya broken line, give the irregular line also shown
in Figure 34. Caqap’aring this line with the similar one in Figure 33,

& This can he ':{eadily proved. Each point on the net regression line was ob-
tained by thenférmula:
"\u
Ay & X1 = o121 + bieaaMz -+ biaaaXs + buzaMs

To thés “values have been added the residuals, z. These residuals equal X; — Xy,
avidhtherefore for each observation are equal to

A
N B} X1 — @rau — bioaaXa — bz — breeaXy

The ordinate of each dot in Figure 34 is the ordinate of the regression line plus 2
and is therefore equal to the sum of the two equations, (A) and (B). If weuser to
represent these ordinates, they are therefore equal to

m = o154 -+ be.uMa + braaaXs + by 4 X1 — ar0m — bizasXs
— big.2aX3 — bra.2aXy

r=X1 — bpa{Xs — M) — by 0a(Xy — My)

= X1 — bra.sgry — bua.ears

The adjusted values shown on Figure 34 are therefare simply the values of Xu
less net Linear eorrections for deviations in Xo and X from their mean values.
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on page 227, we see that though the lines are in general similar there
~ are some marked differences. The average for the second group (X5 =
8.0-9.9) is now above the straight net regression line, whereas pre-
viously it was below it. Likewise the average for X. 3 = 14 and over is
now slightly below the average for X3 = 12.0 to 13.9, wheress before
it was a little above it. Also, the difference between the first two
averages s not so large as it appeared before. Apparently part of the
previous deviations reflected other independent factors,

™\
x]“_bnz 'xz"_bluﬂs
Adjusted Yield A\
2 AN
| - 3
. o 1 Line of grerages|,
35 - :lﬂ"'b * _—___,--"' -{ﬁ;‘:-
Vet ragressron t m <=017)
o hnegy ’*},'b-e 74,,,--'*'. T
/\ﬁ'r.sf 'oppmmm‘rbn iv\z”; FEQrEESIon Cirve
25 LA(E N
# N\
0 4 . 1 W16

8 10 w12
ZzRainfalMNn inches
¥1a,34. Rainfall and yield of corn adjusted to average tempemiiure and year, and
first approximation curve fitted to ‘the averages. [The notation f{X3) on the
figure {orresponds to f3(Xs).d

It is quite evident that a regression curve is indicated, rising shgr;.)ly
to & maximum yield between 10 and 12 inches of rain, then declmu}g
gradually for higheé¥ rainfalls. Such a curve is accord_mg.ly dra\fvn in
freehand, passing-as near to the several group averages as is congistent
with a co&iﬁ’ubus smooth eurve, and yet conforming to the I.lmltfng
conditiong§™as to its shape. This curve is the first approximation
to the.dorvilinear functien.

£\

e Xy = f3(Xs)

whieh was required to be determined while simultaneousl_y taking into
account the curvilinear effects of X, and X3 on Xy, It 1s.only g firat
approximation because it has been determined while aliowing fo? .only
the net linear effects of the other two variables. If their curwilinear
effect were determined and allowed for, that might change somewhat
the shape of this eurve. o

The next step is to determine similar first approximations to t_.he
curvilinear relation between X, and X, and between X; and X4, with
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the net linear effects of the other variables eliminated just as has been
done for X5. It is not necessary to plot the apparent relation between
X, and X5 or X; and X,. This was done in the case of Xy (Figure 33)
solely to illustrate the difference between taking the apparent relations
and taking the net relations after the linear influence of the other fac-
tors had been allowed for (Figure 34}, Instead, we may proceed at once
to determine the net relations for X, to X,. Figure 35 shows this step,

x- b zu X5 Buuza s

Adjpsted N\
Yield _ "

. ) . AN
38— o, ' -+ LS
3¢ e 2%

Lme 8 averages. 'v"\

NMet regressioriing (i1 X, )

Firaf spprovimation

B33 L e reressIon curve ﬁ@\\ J .
) I R
20y 5 0 BL) 20 25 3G 35

X,-Time, ig’)faprs from beginning
Fic. 35. Time and yield of corn gdjusted to average temperature and rainfall, and
first approximation curve ﬁl‘Eed',tb the averages. [The notalion J (X2) on the
figuré correzponds ta f2(X3z).]

This figure is constﬁlgted exactly as was Figure 34, by the Tollowing
steps: (1) Plot}h net, regression line? (2) Plot in the individusl
residuals, 2, as\deviations from that line® (3) Average the residuals
grouped a;sﬁo)‘ding to X, plot the group averages, and connect them by

® Thé*régression equation, for mean values of X3 and Xy, becomes

. '~.‘\ Xy = 63.505 + 0.146X, + 0.537(M3) — 0.405(My)
N = 53.505 + 0.146X + (0.537)(10.784) — (0.405)(74.276)
= 20,214 + 0146%;

This equation is then the equation ta which the net regression line in Tigure 38
is drawn. Substituting the values X2 =10 and Xs =20 in the equation, vajues fl_Jl‘
X; of 20214 and 32.13 are obtained, giving the coordinate points for drawing 1B
the line. .

18 For the first observation, X» =0 and z = —39. The point on the regresS}Oll
line corresponding to X2 =0 has an ordinate of 202, The dot for this observation
is nccordingly plotted at 20.2 — 39, or 25.3. For the next observation, X2 =1 ﬂn_d
2=2.1. The corresponding ordinate on the regression line is 29.4, =0 the dot 18
plotted at 294 4 2.1, or 315, The dot for each observation is plotted in turn it
the same way, with a sliding graphic seale to place the dots sbove or below the
regression line, :
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& broken line, (4) Draw in a smooth curve through .the line of aver-
ages, if a curve Is indicated, conforming to the limiting conditions
stated for this curve, -

Affer the first two steps have heen carried out, just as described for
Figure 34, grouping and averaging the residuals with respect to X
give the averages shown in Table 52.

TABLE 52
AvERAGE VALUES OF z FOR CORRESPONDING X VALUES O
e
Xz values Number of cases Average of X, Averageof 2
07 8 3.5 . =b.38
8-15 8 11.5 \\ +0.24
16-23 8 19.5 a4y +0.64
24-31 8 27.5 +0.26
32-37 6 34.5:.\\: -1.00
- -

The average residuals shown in the t4bl& are then plotted in above
and below the regreszion line in Figqra’;35" and connected by a broken
line. This line of averages indicatesthat corn yield (for years of similar
rainfall and temperature) rose Qraf.p‘id}y during the earlier years, then
more and more gradually, until during the last ten years it tended to
remain about on the sam%.l(::vel. A smooth continuous curve_is. there-
fore drawn through thé &verages, completing step (4) and giving the
first appreximation 't_o,%he curvilinear net regression of X; on X,
f2(X5). 4 o

The same upg'r“ations are then carried out for X4 as shom? in Flgure
36. After drawing in the net regression line,"* and plotting in the
individual\o{\{ﬁsérvations,” we group the residuals on X, and average,
with theresults shown in Table 53.

K:I‘ h\é net regression line for Xy and X; may be determined by an elternative
mé(»hcfd to that used before. On such charts as Figurss 34, 35 or 36, the nep regres-
sion line will always pass through the mean of the two variables. For Figure 36,
therefore, X7 will have its mean value, 31382, when X, has its mean'vs}]ue, 742.8’
From the net regression coefficient, &14.z3, it 15 evident that each unit increase in
X is accompanied by —0.405 unit inerease in X1. I X is inereased from 7428
to 78.28, or 4 units, X will change by (—0.405)(4), or —1.62. For J{T; =7828, X1
will therefore be 31.92 — 1,62, or 30.30. This gives the two sets of points necessary
to locate the line; when X4 — 7428, X; — 31.92; and when Xs — 7828, _Xl =30.30.

12 The individual residuals are piotted in the same way as indicated in the other
two cases; the residusl —39 for X4 =748 is plotted 39 units below th? corre-
sponding point on the regression line, and similarly for the other observations.
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TABLE 53
AvERAGE VaLves oF ¢ For CorrespoNpING Xy VALUES
X4 values Numnber of cases Average of X4 Averageof z
Under 72.0 4 71.08 —1.28
72.0-72.9 5 72.58 —1.24
73.0-73.9 b 73.36 +1.46
74.0-74.9 10 74.30 +-0049
75.0-756.9 7 75.33 \+0.91
76.0-76.9 b 76,44 LA D 64
77.0 and over 2 78.00 7NN =520
76.0 and over 7 76.80 /o —1.03
{ &

7

The last group, on the first grouping, has'but two cases, so the last
two groups are combined, giving the a¥érages shown in the last line.
The fact that both the items above %7 degrees are low, also evident in

xl' blt.‘!’o XDz Xy »,"
adjusted yield &N
Net regre. i X o
regression aw
| i (8 td e
L mci verr e { » Firs? opprwz'ma;‘;bﬂ
O o Forhe regression
.\\\ o | curve FiET
30 P L
MY
e
' X .
N .
o\ 20
g &8 70 T2 Tip 76 78 B0

X~ Temperature, in degrees

N\ Fua. 36. Temperature and yield of corn adjusted to average rainfall and year, and
first approximation curve fitted to the averages. [The notation f(Xi) op the
figure correspondas to f4(X4).1

Figure 36, would give a little more reliability to the average based
on only two items; but it is generally unsafe to give such an extrern®
bend to the end of a regression curve as this would call for, on the
basis of so few observations. The larger grouping will therefore 'be
used in this case, leaving the subsequent approximations to determiné
whether the more extreme bend ig justified.
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The line of averages in Figure 36 indicates that yields may tend
to rise as temperature increases up to between 73 and 75 degrees, and
then 1o fall as the temperature goes still higher. A smooth curve is
therefore drawn in, averaging out the irregularities shown in the
broken line of the group averages and conforming to the limiting
conditions stated on page 226. It does not make much difference if
these first approximation curves are not drawn in in exactly the
right position or shape, as the subsequent operations will tend to
correct them to the proper shape if the original one is incorrect. I
is for that reason that fairly accurate results ean be secured by this
graphic process, even though the true shape of the curves is not, Knevn
at the beginning, O

Estimating X, from the first approzimation curves. W8 have now
arrived at first approximations to the net regression gurves for X,
ngainst each of the three factors. It must be remg":ﬁibered that in
making the adjustments on X; to arrive at thes¢\gurves, only the net
lLinear effects of the other independent variableg'have been eliminated.
Now that we have at least an approximate mheasure of the curvilinear
relations of X, to the independent varighles, making adjustments to
climinate these approximate curvilinear” effects may enable us to
determine more accurately the true ¢iitvilinear relation to each variable.

The first step in the next stage o the process is to work out estimated
values of X; based on the curvilinear relations. To do this we may
designate the relation betweem X, and X, shown by the curve in Figure
35 as f2(X,); the relati‘l{‘bf)etween X, and X, shown in Figure 34 as
f3(X3); and the relation between X; and X, shown in Figure 36 as
fu(X). The estim\ateé of X; may then be worked out by the regression

equation 9 -
& = algse + 12(X2) + f3(Xa) + £1(XD) (57)

The sym])'f} X7 is used to designate this second set of estimates, just
as Xj.wis used to designate the first set, worked out from the linear
regression equation. The constant a1.934 18 different from the constant
a19¥, used in equation (36); its value is given by the forrula

S{fa(Xs) + f3(Xa) + f{X ) (58)

kit

r
41,034 = M, -

To work out a).s34 according to equation (58), it is first necessary to
work out the vatue f5(Xz) + f3(Xs) + fi(X4) for each set of observations.
Tor the first observation, for example, X, = 0, X3 = 9.6, and ?{4 = T4.8.
From f3(X), given in Figure 35, the curve reading (or ordinate) cor-
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responding to a value of 0 for X, is 27.3. For f3(X3), Figure 34, the
ordinate of the eurve corresponding to X3 = 9.6 is 31.7. For fi(X,),
Figure 36, the curve ordinate corresponding to X, = 74.8 is 32.5.
The value [f2(X2) + f3(X3) + fi(X)] for the first observation is there-
fore [27.3 + 31.7 4 32.5}, or 91.5. The sum of these valucs for each
ohservation is the value required in equation (58).

Before continuing the process of reading each value from the
charts for the remaining chservations, it should be noted that, since
many observations of each variable have the same valueg{the same
point would be read from each chart many times. "[‘ire\ Process of

N\
TABLE 54 A

VaLuee or X| CeRRESPONDING TO (GIVEN VALDEs OF X», FROM THE FIRST
ArrroxiMaTION Corvi™

X» f(X ) X, f3(X3) \gS\ {00! ! X | £i(X9)
0 27.8 10 30.8 (" 20 32.8 20 33.4
1 27.8 11 31,03 21 33.0 30 33.5
2 28.2 12 31,3 22 33.1 31 33.5
3 28.6 13 (.35 23 33.1 32 33.5
4 29.0 14 N7 24 33.2 33 33.5
5 20.4 154 31.9 25 33.2 34 33.5
G 29.7 e 32.1 26 33.3 35 33.5
7 30.0 $N17 32.3 27 33.3 36 33.5
8 30.3 2" 18 82.5 28 33.4 37 33.5
9 30N 19 32.6
AX
7N

Workieig”.\but- the computations ean be much simplified by reading each
regitired value from each chart once for all and recording it so that
Atean be used each time. Since each chart indicates each individual
“\'6bservation for each independent variable, only those points for which
there are observations need be recorded. Carrying out this process,
we may record the functional relations as shown in Tables 54, 55, and
56, which show the readings from Figures 35, 34, and 36, :respectivefl}’—13

12In entering these values it is not worth while reading further than the first
decimal, for the line is not drawn more accurately than to within 0.1 or 02 The
accuracy depends, of course, on the scale; but it is not worth using very large cha_l’tﬂ
fo seeure gpuriously high accuracy, when the standard error of any particular Pﬂm_t
on the curve is probably several units and when the curve is only a first approxl®
mation, subject to subsequent modifieation,
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The values to determine ¢ 034 may now be worked out in orderly
manner, as shown in Table 57, in the fourth to the seventh eolumns.

TABLE 56

Varoms oF Xy CoreearoNDING TO. GriveEN VALUEs oF X3, FROM THE FIRST

ArProxmMaTION CURVE

X: £(X3) X3 f1(Xs) X3 F5(Xs) X | £(Xs)
Q

6.8 | 24.6 9.5 | 315 | 108 | 834 | 129 | 333
6.9 | 25.0 9.6 | 3L7 .0 | 335 || 13.07|, 832
7.7 | 271 99 | 224 | 1.3 | 336 | 136 |(320
7.8 | 27.4 0.0 | 326 | 115 | 87 | 189327
8.0 | 270 10.1 | 326 | 11.6 | 33.7 [ 14| 32.5
87 | 207 10.4 | 33.1 12.0 | 33.7 {72’} 310
9.3 31.0 10.6 33.3 12.1 33.6 \T6.5 | 30.8
9.4 | 31.2 107 | 3.4 | 125 | 338

N\

TABLE 56 N\

ViLDES oF X; CORRESPONDING TO GIVEN, VALUES OF X,, ¥rROM THE FIReT
APPROXDMATIONCUBVE

E XY

Xy Ja(Xa) X4 JES Xa FilXa) Xy | X0
60.9 | 30.2 | 73.0 4\ezs || 7az | 28 | 757 | 316
7.0 | sio || 73l sze | ms | 327 | 758 813
715 | 8.4 | 83| 326 || 746 | 326 | 7.0 | 813
1.9 81.7 || o786 32.7 74.8 32.5 76.2 | 31.0
720 | sis MNos7 | 327 | 780 | 323 ) 768 [ 30.1
726 | ssanl 740 | 828 || 72 | 821 | 77.6 | 20.0
72.8 g 7a1 | s28 | 7.3 | %20 || 84 | 270
7o | it
.\".

01,234 = 31.916 — _':%_ = - 63.397

“This computation gives us the sum of
vh\les for the 38 observations. Substituting

the respective functional
this sum and the number

of observations in equation (58), we find the required constant to be
3621.9

Since the functional values for our regression equation are only expressgd
to one decimal point, we shall use —63.4 for a; 254, Which will result in
the estimated values being 0.003 unit too low, on the average.
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It is now possible to eomplete the process of computing X7, the
estimated value of Xy, using the first approximation curves, according
TABLE 57

ComruraTion oF FuncTionit VaLors CORRESPONDING TO INDErFENDENT VAR
ABLES, OF THE EBTIMATED VALUE OF X, AND THE Naw Reswuan, ror Eaca

OBBERVATION
1 2 3 4 5 & 7 8 8 | 10
, , J';E-‘fz) . . Doy gt
S LI T VG O A SR P R ) R R A B N i
- +4(X4} .\:\
0 9.6 74.8 27.3 3.7 32.5 91.5 :as;.f\4 215 ~3.8
1 12.9 71.5 27 .8 33.3 31.4 92 5 | 20y 33.7 46
2 9.9 | 74.2 28.2 | 2.4 | 328 034 | Lafo j oo | -2
3 8.7 74.3 28 .6 29,7 32.7 a1 0027 6 275 —0.1
4 8.8 75.8 20.0 24.8 31.5 855 [ 1.7 21.7 0
& 12.5 74.1 20 .4 3.5 32.8 03 7 | u42.3 3.4 —0.4
8 13.0 74.1 29,7 33.2 32.8 05.7 | 32.3 a0.8 4.5
7 10.1 74.9 30.0 2.6 32 aN >as.4 ] 32.0 29 0 —-2.1
8 19.1 | 730 20.3 [ 326 ) 3203 esa| mis | w2 | —is
9 10.1 75.2 306 | 326 @81 | o953l a9 52.0 0.1
10 10.8 75.7 30.8 3.4 h\al s 95.8 | 32.4 34.0 1.6
11 7.8 78.4 31.0 27 4\)027 .6 86.0 | 226 9.4 -3.2
1z 16.2 72.6 31.3 30 32.2 94.5 | 31.1 36,0 4.9
13 14.1 72.0 a8 | 1.8 05,8 | 32.4 0.2 —2.2
14 10.6 71.9 317 {883 31.7 o6.7 | 33.3 324 —0.9
15 10.0 | 74.0 3199y 32.5 az.8| 9721 33.8 36.4 2.4
16 1L.6 | 73.7 3214 837 | 32.v| e85 | 35.1 | 36.9 1.8
17 13.6 73.0 33 3z.0 32.5 97.7 { 3+.3 31.5 —~2.8
1% 12,1 73.3 L N\32.5 23 .6 32.6 o8.7 | 835.3 0.5 —4.8
19 12.0 74,64 ) 22,6 337 32.8 98,0 | 855 32,3 -3.2
20 9.3 73\{\ 32.8| 310 32,7 96.5 | 33.1 24,9 1.8
21 T.7 W2 33.0 27 .1 ao a1.1 2y a0, 1 2:4
22 1.0 L\F 2 3.1 33.5 32.6 99.2 | 35.8 35,9 1.1
it:3 8.9 Y JT7.6 33.1 25.0 200 BT 1 23,7 26 .8 3.1
24 2.5 ) 76.9 322 315 30.1 94 B | 31.4 30.5 -0.9
25 1§, 69.% 33.2 0.8 0.2 4.2 | 30.8 33.3 2.5
26 \:"\a‘fs 75.3 33.3 31.0 32.0 96.3 | 3.9 20.7 -3.2
27 mINT9.4 72.% 33.3 31.2 32.3 96.8 | 33.4 33.0 Le -
261 8.7 | ve.2 33.4| 207| 31.0] 41| 307 | 289 | —o08
W28 9.5 76.0 33.4 3.5 31.3 96,2 | 32.8 35.¢ 2.4
Nan 11.6 72.9 225 a3.7 32.4 s 6| 382 38.3 2.1
Va1 12,1 7H.9 32.5 32.6 30.1 gr.2 | u3.8 35.2 1.4
\ 32 80| 75.0 33.5 27.9 32.3 37| 30.3 33.5 5.2
32 .7 74.8 33.5 33.4 a2.5 96,4 | 56.0 36.7 0.7
34 13.9 72.6 3.5 32.7 32.2 98.4 | 35.0 26.8 —-8.2
35 11.3 | 75.3 33.5] 33.8 32,0 9.1 35.7 38,0 2.3
a8 11.8 74.1 3.5 2.7 32.8 | 100.0| 36.4 31.7 —4.9
37 10.4 T1.0 3.3 33.1 31.0 97.6 | 34.2 320G —-1.8
Totals. . .[........|.... ... 1,208.4 [1,204.2 |1,209.3 |3,621.9
.

to equation (57), and the constant which has just becn computed.
When equations (57) and (58) are compared, it is evident that, except
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for the constant term, X7 is equal to the values that have just been
computed in the seventh column of Table 57. Accordingly, all that is
necessary is to subtract 63.4 from each of those values. This step is
shown also in Table 67, in the eighth column.

The column headed Xi shows the estimated values obtained by
this process. The next step is to see whether the new estimates come
any nearer to reproducing the observed values of Xy than did the first
set of estimates, based on the linear regression equation. We therefore
compute a new set of residuals, 2, by subtracting the new estima
from the actual values of X;. This step, also, is shown in Table 57

2 =X~ X/ 59

If the individual residuals shown are compared with the residuals
obtained by the linear regression, as computed in Table 50, it will be
seen that in general the new residuals are smaller/than the previous
ones, though the reverse is true in many cases.\There are 23 cases
in which the new residual is smaller, and 180 which it is larger
than the original residual. A more accurate comparison can be
obtained by comparing the standard dewiations of the residuals for
the two sets. For the linear correlation, the standard deviation of
the residuals was 3.6 bushels, wheréas the standard deviations of the
new residuals is 3.0 bushels. Apparently the new estimates do come
nearer to the observed values, oh the average, than did the first set
of estimates. {See also Note'on page 258.)

Determining the er\c’m&' approximation regression curves. The
regression curves used%‘n constructing the estimate X{ were only the
first approximations™o the true curvilinear relations, since they were
determined by éMfiinating only the linear effects of the other inde-
pendent fac’tq."rs\' New that the residuals obtained by the use of the
first approXimation curves have been computed, however, we can de-
terming \whether any change in the shape of the several curves is
NECCESATY. :

{5 do this we construet Figure 37 by drawing in the regression curve
from Figure 35, using the same scale as before. Use of Table 54 makes
it easier to reproduce the curve, Next we plot each of the last residuals
as a deviation just as before, except that now the residuals are plotted
as deviations from the regression curve, instead of from the regression
line, at the point corresponding to the independent variable X,. Thus
the first observation, with X = 0, has 2” = — 36. The point on the
curve corresponding to X, = 0 is 27.3; so the dot has for ordinate
273 — 36, or 23.7. The values for mext observation are X, =1 and
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2"’ = 4.6, The corresponding value of f, (X,) is 27.8, so the ordinate
for the dot is 27.8 + 4.6, or 32.4. The coordinaies for this dot are
therefore 1 and 32.4. The remaining observations are plotted in the
same manner, shortening the process by sealing the valuc for 27 di-
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rectly above or below fmm' the corresponding point on the regression
curve.

With the dot plotted it is evident that the scatter is too great

to indicate deﬁn

X

p
4 I
;.\UERAGE VALUES OF z",

TABLE 58

1.
ﬁy changes which may be needed in the curve,

ror CorREsPONDING X2 VALURS

. '..‘}\2 values

Number of cases Average of Xy

Average of 27

07
8-15
16-23
24-31
31-37

o 0o 00 a0 oo
O3 by =

e N0 e
on Oty &n O

+0.10
+0.16
—0.08
+0.64
—1.08

if any, simply from the dots alone.

Accordingly the residuals are

averaged in groups, employing the same grouping as before (Table 52},
which eliminates the need of averaging the corresponding X, values
over again, The new averages work out as shown in Table 58.
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The averages are next plotted as deviations from the first approxi-
mation eurve. They indieate that a slight raise in the lower part of
the curve may he needed, and a downward bend toward the end.
It appears that now that the influence of rainfall and temperature
on yield have been more aceurately allowed for, the upward trend
with time is slightly less than it seemed before in the early years;
and the trend seems to have turned downward toward the end of the
series—the exact year or extent of the turn is indeterminate. A new
curve is therefore drawn in in Figure 37, and, as it happens, a smoot
continuous eurve can be drawn exactly through each of the first thrge
group averages, but not having the extreme bend indicated by tKedlast
two group averages. O

The same process may now be applied to X3, to see if.Any change
need be made in the first regression curve for the chgmg’e in X; with
changes in that variable. This process is carried out a#sliown in Figure
38, the first approximation curve being drawn in\jugt as hefore, using
the data given in Table 55. N

Instead of plotting the individual residuslsfor each ohservation, as
was just done with respect to X, we may proceed at once to compute
the average residuals for each of the ngoﬁps of values of X3, since it is
sufficiently apparent from Figure 37(that the scatter of the individual
observations is still too great to gérve as a guide in correcting the first
approximation curves. Averaging the residuals gives the averages

shown in Table 59. R
+8 3 T
.\\ v TABLL 59
Averacr Varuza oF z”, ¥or CorrESPONDING Xy VALUES
AX
Q}Ii.unher of | Average of | Average of | Average of | Average of
s va]ues' & caszes X; z’ X 2"
\\/
N
Undex 80 4 7.30 +0.58
§:09.9 10 9.19 +0.03
16:6-10.9 8 10.35 —0. 15} 10.75
7.0-11.9 5 11.40 +0.48 7 +0.09
12.0-13. ¢ 8 12,76 —1,11} 13 53 —0.34
14.0 and over 3 15.60 +1.73 ’

Again the averages are somewhat irregular when plotted, so the last
four groups are reduced to two, and the new averages plotted and indi-
cated separately. The number of cbservations represented by each of
the first set of averages is indicated next to it, so that averages based
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on & small number of observations will not be given undue weight in
drawing in the curve. It might be desirable in some cases, also, to try

Z-flxgd-Floxg)
40 i

| | [ | l [ I I

S aprroyas af :mofxs.rroaps
~fa-urém5;es &f large drpups

W Ll e

? 8 ) 0 1 t2
. ZXyRainfoll, in inches, ) _
Fig. 38. Rainfall, and yield of corn adjusted 0 average lemperature and lime on

the hasis of first approximation eurvesNAhd second approximalion to fa{Xa).

{3 by i 16

regrouping the cases into diﬂe't"gri“t- éroups——say from 8.5 10 9.4, 8.5 to
10.4, ete.—and see if that would change at all the indications as to the

™
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Fia. 39. Temperature, and vield of com adjusted to average rainfull and time on
the basis of first approximation curves; and second approximation to fe{Xs).

shifts needed in the first curve. Working that out in this case, the
changes neede_d are still found to be about the same as shown by the
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group averages in Figure 38, though somewhat less regular, owing to
the smaller size of groups. A new curve is then drawn in freehand,
as indicated by the group averages, rising somewhat higher than for-
merly at both ends, and not rising quite so high in the central portion
as before.

Turning to the relation between X, and X, the first approximation
curve for f, (X4} is reproduced in Figure 39, using the values given in
Table 56. The next step is to average the values of z’* for correspond-
ing values of X,;. Using the same groupings used in Table 53, we_
arrive at the averages shown in the following table:

KO\
TABLE 60 O
AVERAGE VALUEH OF z”, For CORRESPONDING X, VALUES\
S

X4 values Number of cases Average of Xy \(J'\ > Average of 2
Under 72.0 ¢ 7108 +1.15
72.0~72.9 5 72.58" -0.38
73.0-73.9 5 W3.36 —0.58
74.0-74.9 . bil} L \74.30 —0.86
75.0-75.9 7 ,,’:~ 75.33 +0.63
76.0-76.9 b ..'3:. 76.44 +0.90
77.0and over 2 RN 78.00 —0.05
76.0 and over 78 76.89 +0.63

28 3}

&

Plotting these new ;erages, and connecting them by a broken line,
we see that the relation of yield to temperature may be quite differ-
ent from the wayt appeared on the first approximation. Apparently
the highes y}%ids are obtained around 75 to 76 degrees, instead of at
74 degreefhigher temperatures appear to reduce the yield markedly,
but lower temperatures have only a slight influence on the yield.
Th\:é&_\mdications are all within the theoretical limitations on the shape
of\he curve, as stated on page 226. The new curve, drawn in free-
hand so as to pass as nearly through these new averages as possible
and still maintain & smooth continuous shape, with only 2 single maxi-
mum, expresses these relations,

Estimating X from the second approximation curves. Now that the
second approximation curves have been determined for each variable,
we can proceed to estimate values of X; on the basis of the revised
curves, to sec whether the new curves enable us to estimate X, any
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more accurately than the first set of curves did. 7To facilitate the process
we first construct tables for f5(X3), f3(X3), and £3(X,), showing the

readings for the functions from the revised curves.

TABLE 61

Varoes oF X; Corresponpmig To GiveEN VALUES oF X3, FROM THE SEconD
ArPrOXMATION CURVE

Xz | &) || X | X | X2 | X2 | Xa f f2(X2)
0 27.4 10 31.0 20 32.7 (20N | 33.6

T 27.9 11 31.2 21 33.0 [K"y80° 33.5
2 28.4 12 31.4 22 33.2. .7 31 33.4
3 28.8 13 31.6 23 33.3, || 32 33.2
4 20.2 14 31.8 28 | :%;4 33 33.0
5 29.5 15 32.0 25 33.5 34 32.8
6 29.8 16 32.1 26 " 33.6 35 32.6
7 30.2 17 32.3 x| 337 36 32.4
8 30.4 18 32.5 | Q2% 33.7 37 32.2
9 30.7 19 32.6 NI\

To simplify the ealculaj;iéiis," 20 is subtracted from each of the
functional values in making,subsequent entries. The computations to
determine the estimatediyalues are then carried out as shown in detail

\Y

¢ \J

N\ TABLE 62

Varugs oF X CoRRESPONDING TO GIVEN VALUES OF X3, FROM THE SECOND
- ApPPROXDMATION CURVE

N
Xs\;'\.‘fa X)) | X3 | A& I X | A&y | X | AR
638 25.5 9.5 3.5 10.8 33.3 12.9 33.0

NG.B 25.7 9.6 3.7 11.0 33.4 13.0 33.0

g 27.5 0.9 32.2 11.3 33.4 13.6 32.8
7.8 27.8 | 10. 32.3 1.6 33.3 13.9 32.7
8.0 28.2 10.1 32.5 11.6 33.3 14.1 32.7
8.7 29.9 10.4 329 12.0 33.2 16.2 32.2
9.3 31.1 10.6 33.1 12.1 33.2 16.5 32.1
9.4 31.3 10.7 33.2 12.5 33.1

in Table 64 following, just as for Table 57. In practical computation
these entries, for the second approximation curves, would be made on
the same sheet as were the entries in Table 57 for the first approxima-
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tion curves, thus eliminating the work of entering the values of X, X,
X3, and X, over ggain.

Table 64 is worked out just as was Table 57. Thus the data for the
first observation show values of 0, 9.6, and 74.8 for X,, X3, and X,
respectively. Looking up the corresponding values in Tables 61, 62,
and 63 gives values of 27.4, 31.7, and 32.3, for the three functional
values. Bubtracting 20 from each wvalue, to reduce the subsequent
clerical work, we enter 7.4, 11.7, and 12.3 in the functional columns.

N\
TABLE 63

N

O\
Varoes oF X3 CorresponpiNg To GIVEN VALUES oF X, FhoM THE §'E(\.0ND
AprroXmMATION Cunve A\

Xo | AX) | X | A0 || X KD B | XD
69.9 31.6 73.0 32.0 74.2 32.2 75.7 32.2
71.0 317 73.2 32.0 74.3 3227 (| 75.8 32.2
71.5 31.8 73.3 32.0 74.6 | £302 76.0 32.1
7.9 | 318 73.6 | 32.1 74.8.N :x\32.3 76.2 32.0
72.0 31.8 73.7 32.1 76.0 ¢ 32.3 76.9 30.7
72.6 31.9 74.0 32.2 6.2 32.3 77.6 29.1
72.8 32.0 74.1 32.2 [L\75. 32.3 8.4 | 27.8
72.9 32.0 M

The three functional valuessare then added, and the sum entered in the
seventh column. The\e\htﬁes for the functional readings are completed
89 shown, and the Sum computed for each observation. Then the
average of the seventh column is determined, giving the value”35.30.
As the average,0f’X, i 31.916, the value of the new constant, ay a4, is
found by @aﬁon (58) to be

O 'l oas = 31916 — 35.300
o =— 3384

N
\ -

Accc;rdjngly, 3.4 is subtracted from each of the values in colurnn 7 to
give the estimated value of X;, X7, which is then entered in the eighth

eolumn of Table 64. _
The final step in computing the table i to subtract each of the esti-

Fr

mated values, X7, from the actual value X, giving the residuals 2,

which appear in the last column. ] _ Y
Comparing the new residuals, z’/, with the previous ones, 2, given

in Table 58, we find that the size of the residuals has been increased in

T,
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just about as many cases as it has been decreased. But when we com-
pute the standard deviation of the new residuals, we find that the

TABLE 64

CoMPUTATION OF FUNCTIONAL VALUEE, FROM THE SECOND AFFROXIMATION CURvES,
CORRESPONDING TO INPEPENDENT VARIABLER FOR Facn OBSERVATION, aND
COMPUTATION OF ESTIMATED VALUE For X AND OF NEW KEsfpuars

Independent Corresponding " Nepends

variables functional values * fefXad |y ent \X,—Xf'
Ff?,(xﬂ = .\'r' vapiablé P
% | x| X [ A& | foy ] gy [T () _
{1 2) 3} (4} 5} {6) il N 9 (10}

7%

0 9.6 74.8 7.4 11.7 12.3 31.4 |n2800 | 205 3.5
1 12.9 71.6 .9 13.0 1.8 sa.7z[{2v s 3.7 4.4
b 9.9 74.2 8.4 12.2 12.2 38N} 29.4 7.9 ~1.5
3 8.7 74.3 8.8 9.9 12.2 3 | 27.5 975 0
4 6.8 75.8 8.2 5.5 12.2 26°. 0 2.5 o7 —1.8
5 12.5 74.1 0.5 13.1 12,27 N3 s 31,4 3.8 0.5
8 13.0 74.1 L] 13,0 12& & 35.0 31,6 35,8 5.2
7 10.1 74.0 10.2 12.5 22 349 3.5 20,9 —1.8
8 10.1 75.0 10.4 12.5 (43 35.2 31,8 302 —1.6
9 10.1 75.2 10.7 12.5% (2.3 35.5 32.1 a2 —~0.1
10 108 75.7 11.0 13\5"' 12.2 36.56 33.1 31,0 [
11 7.8 78.4 1.2 VB 7.3 263 22.9 19 4 —3.5
12 1.2 | 72,6 | 1.4 JUt22 11.8 | 3.5 | 32.1 360 3.9
13 14.1 72.0 11653 %127 11.8 6.1 2.7 3.2 ~2.5
14 10.6 71.9 11 13.1 11.8 36.7 a2 32,4 —0.9
15 10.0 | 740 mxﬁ,o 12.3 | 12,2 | 86.5 | 331 | s 3.3
18 1.5 73.7, 4 M2.1 13.3 12.1 37.5 3.1 3.0 2.8
17 13.6 73&;\" 12.3 12,8 12.0 37.1 33.7 31,4 ~3.2
18 12.1 3. 12.5 13.2 12.9 v 343 30,5 -3.8
19 12.0 | Gde 12.6 13,2 12.2 33.0 346 32,3 —2.3
20 9.3 7738 12.7 11,1 12.1 35.9 32.5 34.9 2.4
21 70N 6.2 13.0 7.5 12.0 32.5 261 30,1 1.0
22 w7 73.2 13.2 13.4 12.0 3%.6 35.2 36.9 1.7
28 |G 77.8 13.3 5.7 9.1 28.1 24.7 26.8 2.1
21 0.5 | 768 | 13.4 | 115 | 107 | 856 | 22 | 305 [ -17
254 16.5 £9.9 13.5 12.1 1.6 37.2 33.8 33.3 ~0.5
264 9.3 75.3 13.8 11.1 12.3 37.0 33.6 29.7 -3.9
N\ 9.4 72.8 13.7 11.3 12.0 37.0 23.6 350 1.4
v 28 8.7 76.2 13.7 9.9 12.0 33.0 32.2 29.9 -2.3
9.5 76.0 13.6 11.5 12.1 ar.2 338 35,2 1.4

30 11.6 72.9 13.5 13.3 12.0 38.8 35.4 38.7 2.8
31 12.1 76.9 12,4 13.2 10,7 37.3 33.9 85.2 1.3
32 80 [ 75.0 | 13.2 8.2 12.8 | 33.7 30.3 35.5 5.2
33 107 § 748 13.0 13.2 12.3 35.5 35.1 36.7 1.6
34 13.9 72.8 12.8 127 | 11.9 37.4 34.0 5.6 ~7.2
36 11.3 75.3 12,6 13.4 12.3 ’.3 34.9 as. 0 3.1
36 1.8 | 74.1 12.4 13.3 12.2 7.9 34.5 31.7 ~2.8
a7 10.4 71.0 12.3 12.9 1.7 3.8 | 33.4 32.6 —-0.8

Totals.. |........]........ 4476 | 4451 | 4487 341 4
L,

* Less 20.0 for each funetional reading.
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standard deviation of 2 is 2.80 bushels, or slightly smaller than the
standard deviation of z”, 3.0 bushels. (See Note on page 258.)

Correcting the curves by further successive approxzimations. The
process ordinarily would be carried through one or mere additional
approximations by repeating the steps shown. ‘Thus the last residuals,
2", when averaged and plotted with respect to the second set of approxi-
mation curves, would indicate whether any further modifications were
needed in the curves; if any were made, new readings would be made
from the new curves, new estimates of X; obtained from them, and
another set of residuals determined. 8o long #s the standard deyiation
of each new set of residuals is smaller than that of the previous set
© (and no more complicated curves were drawn in, which wpula require
more constants to represent them), the approximatiof “eurves may
be regarded as approaching closer and closer to the'ghderlying true
eurves. When, however, the curves have been deterinined as closely
as is possible. from the given data, the standdrd deviation of the
residuals will show no further decrease and gy even increase slightly.
In such case the seb of curves showing @h@)owest standard deviation
of residuals (and yet conforming to thebypothetical limitations) may
be regarded as the final eurves deterinined by the process.*

We can make a cheek on thé‘slope and amplitude of the final
curves hy the method of least sqlifires, using the supplementary methods
set forth in pages 401 to 4Q8bf Chapter 22. Or if it is desired to have
a mathematical expressioh of the several curves, equations may be
selected capable of rep%enting the several curves whose shape has been
determined by the.graphic successive approximation process, fitting the
mathematical ciir¥es according to the methods presented briefly earlier
in this chaptéryon pages 221 and 222, and described in more detail
in the firt\séction of Chapter 22. .

Statm)@ the final conclusions. After the final shape of the several
net regression curves has been determined, it still remains to state
£hos¢ curves in such shape that their meaning is perfectly clear. The
several functions may be stated to show the value of the dependent”
factor associated with given values of the particular independent fac-
tor when values of other independent factors are held ab their mean.
There are two alternative ways of stating the associated values: (1)
as actual values and (2) as deviations from the mean values.

14Ty very exact work, the efiect upon the residuals of modifications in each

curve separately might be tested after this point, to insure that each individual
‘yegression curve had been fitted to the data with the greatest degree of accuracy.
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To state the associated values as actual valucs, we may use the
following procedure:

First, the mean of all the values read from the final curve is de-
termined. For fo(X,), this mean may be designated M,y;. The
values from the curve are read off for selected intervals of X5, Then
the estimated values of X, for each of these values of X, (with values
of X3, X,, etc., at their means) are determined by subtracting the mean
of the curve readings from each of these actual readings and adding o
the result the mean of X,. That is, if we use X; = Fy(Xp) tq desig-
pate these values of X, estimated from the net, curvilinear relatien to
X, we can define them by the equation O\

N\

X1 = Fy(Xo) = [o(X2) — Myy + My~ (60)

If, however, the expected values of X, for giiﬁen values of X, are
to be stated merely as deviations from the dhean values, those devia-
tions may be determined by subtracting qu each curve reading the
mean of all the eurve readings. If we Use Fy(x,) to designate these
expected deviations from the mean Jfalues, we may define them by
the equation ) '

7, = FalzhBa(Xs) — My (61)
It is evident, from equations :tﬁl)) and (61), that
NiﬁFz(Xz) = Fy(z3) + M,

In the actual s %étr;ent of the results of a correlation study, it is fre-
quently desirable,to state the relation of the dependent factor to the
most importaft independent, factor according to equation (60), and to
state the pelation for the remaining independent factors according to
equation™(61}. When that is done, the estimated values of Xy, hased
on all'the independent, factors, may be readily computed by taking the
estimate from the most important factor, and then adding to or sub-

) m"tﬁﬁc’ting from that the corrections to take account of the departures of

other factors from their-means. Using X to designate this final esti-
mate of the value X, and taking X, as the most important factor, We
make the estimate by the equation

X} = Fylm) + Fa(Xo) + Falwe) 4+ -+ Falz) (62)

The process of working cut these final statements of the net curvi-
linear regression lines may be illustrated by the data of the corn-yield
problem, Since the rainfall (X;3) was apparently the most important
factor, that may be taken as the one for which the regression is tobe
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stated aceording to equation (60). If we regard the second approxima-
tion eurve shown in Figure 38 and Table 62 as the final curve, then
Table 64 gives the readings from this curve for each of the individual
observations.
The mean of the readings of fo{X3) is next computed from the
values of Table 684, The sum of the 38 (X3} readings is 445.1, s0
445.1

Myxy = N = 1171

N\
The mean value of X; is M, = 31.92. From equation (60}, .

Fa(Xg) = f3(X3) — Mpgy + M) & N
“rhich is A 4
F3(Xa) = f5(X3) — 1171 + 31.92 “s N

= f3(X3) + 20.21 O

All that is necessary, therefore, is to add the’new constant, 202, to
the values read from the curve. This procéss is shown in Table 65.

TABLEA\65"
COMPUTATION OF AVERAGE YIELD OF, Cory Wite VarviNg RanraLn, Howbive
TrEND 1IN YIELD AND INFLOENCE OF TEMPERATURE CONSTANT

Inches of rainfall, uii?:n Constant, Average yield,
X, N7 My~ My, Fa(X3)
P\ 6.0 20.2 26.2
8 I 8.2 20.2 98.4
{"\ 10.5 20.2 30.7
aaN" 12.3 20.2 32.5
o\ 3.4 20.2 33.6
NS 12 13.2 20.2 33.4
N3 13.0 20.2 33.2
N 14 12.7 20.2 32.9
15 12.5 20.2 327
16 12.3 0.2 22.5

* Curve readings minus 20, just a1 entered in Table 84.

The eomputation for Fy{z,) follows the same form &s that for
F3(X3), save that equation (61) is used instead, and hence the mean
of X, is not involved. First the mean of all the readings for f4(X5),
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as shown in Table 64, is computed, giving the value of 11.81. The
values for Fy{x,) are therefore given by the equation

Fo(za) = J{(X3) — Msx,
= (X — 1181

These values are worked out in Table 86.

TABLE 66 ’
) N\
CoumpuTaTioN oF DEviation oF Cory YiELDS FROM YIELDS OruEnwisy \EXPECTED,
Becavse oF DIFFERENCES IN TEMPERATURE FOR NEARnX

'\

Average Readings from A Oorrection te
temperature, final curve,* Constm]t: “‘ " expected yield,
X, X9 - M (6 Falzs)
70.0 11.6 S8 —0.2
71.0 11.7 o\‘;.—n.s —0.1

72.0 1.8 N\ —11s 0

73.0 12.0 > -1.8 0.2
74.0 12.2 o\ —~11.8 0.4
75.0 12.3 O -11.8 0.5
76.0 12,1087 -11.8 0.3
77.0 1005, —11.8 —1.3
78.0 8.3 —11.8 —3.5

* Clurve readinga mim{%()pjhat as gntered in Table 64.

The net comrection in the estimated yield to allow for the influence
of trend can he obtained by carrying through a similar computation for
Falzg). »'\I‘% readings for £5(X,) sum to 447.6, so My = 11.78. The
value;tciil Fy(zxs) are then given by the equation

*
&

SN Fafae) = f2(X,) — 11.78

N This eomputation is earried out in Table 67,

The conclusions of the study can then be stated as shown in the
last column of each of the last three tableg, free from all the previous
details, '

The relations for each of the variables ean also be combined to
show the expected or estimated yield for various combinations -of the
independent factors, Thus for the present case, it might be desired
to combine the findings into a table showing the expected or probable
vield for any given combination of rainfall and temperature, with
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the 1927 trend of yield. These values can be obtained by taking the
trend correction for 1927, +0.4, and combining it with the estimated

TABLE 67

CoMPUTATION 0F DEviaTioN of Corn YIELDS FROM THOSE OTHERWISE ExpzcrED,
BecavsE or Ner Trenp iy YieLps

Readings from Correction to
Numbe;':f year, | Date final curve,* Co;}stant, expected yigld)\
. f(Xs @ Fy(zg)
28 N
0 1890 7.4 —11.8 (24
5 1895 9.5 —11.8 AN -2.3
10 1900 1.0 —11.8 /N ¢ —0.8
15 " 1905 12.0° —11.8 L ° 0.2
20 1910 12.7 - 18y 0.9
25 1915 13.5 - —11,8", 1.7
30 1920 13.5 A1v8 1.7
35 1925 12.6 LM 0.8

* Curve readings minus 20, " { "
*.0
a

influenee of various quantities ,'fol'rb.in and degrees of temperature.
These estimates would then bedefined by the equation

X =lale) + Fa(Xs) + Fylen
204 + Fs(X3) + Falz4)

Combining the™readings for F5(X3) from Table 65 with those for
Fylzy) frorxﬁl‘a”b!e 66, and adding in the correction for Fy(z,) as just
stated, w‘e\:obtain estimated yields as shown in Table 68.'*
Inp;%aring a table such as Table 68, we should not enter values for
combinationz of the several factors which were not represented in the
data’on which the relations were based. Examination of a dot chart
oF the relation between rainfall and temperature, for the data included
in the analysis, shows that no combinations of rainfall below 9 inches
and temperature below 74° appeared in the record, and no cases of
temperature above 78° with rainfall above 9 inches occurred. Ac-
cordingly, these combinations, and other combinations which were not
represented, are left blank in the table, as shown. (A more exact

15 Table 68 may be compared with the results secured by cross-clamifying and
averaging the same data, by the methods of Chapter 11,
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method for measuring the representativeness of the relations is referred
to in Chapter 19, on page 349.)

By combining a table such as Table 68 with a statement of the
extent to which yields averaged bigher or lower than those shown at
different times through the period, all the conclusions from the study
can be presented in simple form, easy to understand.

TABLE 68
Esrmaten YELD oF CorN, 1IN BusueLs PER Acre, With VARTING RAL&F\LL' AND
TemreraTURE CoNDITIONS, FOR 1927 A\
Q
Average temperature f3
Inches of il porttu B; T'
rainfsll * JEA
70° 72° 40 QW 76° 78°
7 1 1 27.0 26.9 23.1
9 30.9 31.1 a5 31.4 t
1 as.s 3.0 V34,4 34.3 e
13 33.4 33.6 (}" 34.0 1 i
15 32,9 331 by 1 !

* Total for June, July, and August.i ’éve}ége for 9 Corn-Belt stations.
¥ Average for June, July, and Augusty at same 9 stations.
I This combination of factors was not represented in the observations analyzed.

S
The final resultsvof curvilinear correlation studies, after being
simplified to thesform shown in Tables 65 to 67, or in Table 68, may
also be expregséd graphically for final publication. Thus all three
relations might be combined into a single figure, such as shown in
Figure 48,(to present in relatively simple form the final conclusions
reacheﬁxby the statistical analysis®
It ‘might be noted at this point that Table 68 i¢ much more than
..(erely a table of average yields for various rainfall and temperature
groups. There were only 38 observations to begin with, and only 14
of those were under 74 degrees temperature. If these 14 observa-
tions had been grouped according to year and rainfall, and the averagé
yield determined for each class, only the roughest sort of groups
could have been made, and even then the averages would have had but
little reliability. As the result of the correlation study, however, all 38
observations have been drawn on to determine the relations. The table
shows the yield most likely to be received with any of 16 different

18 A three~limensional chart illustrating Table 68 is shown on page 373.
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combinations of rainfall and temperature, for the trend in 1927.
Other estimates ecould be shown for & large number of other combina-
tions. Furthermore, 1t is known that estimates made from such tables
agreed with the actual yields to within 2.8 bushels in about two-thirds
of the original eases. The reliability of these estimated yields is thus
greater than it would be for any average of a few cases alone, This
example illustrates the ability of correlation analysis both to bring
out of a series of chservations relations which are not observable
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FIQ‘:}U.. Relation of yield of corn to rainfall, temperature, and time.

Urrfti}e surface and to provide a basis for estimating the probable
éﬁéct on the dependent factor of new combinations of the independent
factors. .

In this particular case the final shapes of the regression curves
showing the net differences in yield with differences m -ramfall and
time are not greatly different from those indicated by simple corre-
lation. In some cases, however, the final shape of the curves m?y.be
markedly different from the spparent shape before the variation
associated with other factors has been eliminated. Thus the final
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shape of the curve showing the net differences in yield with differ-
snces in temperature, after allowing for the influcnce of ramnfall and
time, is quite different from what might have heen expected from
the original observations, as is illustrated in Figure 41. The curvi-
linear net regression is also quite different from the lincar net regres-
sion, indicating that 74 to 76 degrees is the optimum temperature,
whereas the straight line indicated that the lower the temperature,
the higher the yield. With multiple correlation, as with simple corre-
lation, the determination of the regression eurves makes the results
much more definite, adequate, and usable than docs merely, &he deter-

mination of the linear regressions. O\
: ¢\
Yield of Corn O
Bushels peracre \
50 l —
&
Ne# [inear - °, 4 ..,\
35 ‘%‘“lcy; — \
e : > \,“ et curviiineor
''''' ST 3_’___} regression of
e ——r =, < :"‘_lit."ﬁ"jv-we;do”
30 ST N Pemowe
Y
k3
W
25 N
20 —

8 s 72 T¢ 76 78 80
N Temperoture in degrees

Fig. 41, Comparisén\\of’apparent relation of corn yields to temperature with net
relation after eliminating influence of rainfall and of trend in yield.

Limitations on the use of the results. It should be noted that
the results’of the corn-yield analysis apply only to the same arca from
whigh%the data were drawn and to the period which they covered.
Ths they provide no basis for estimating corn yields in other gections,

.(and their use in estimating yields in other periods—as in subsequent
\ ) years—is attended by increasing risk due to the necessity of extrapolat-
ing the trend regression. Although this may give fair results for 2
year or two, as has heen illustrated, it may tend to beeome increasingly
inexact. For-example, it may be that the trend of yield did ot really
turn downward about 1920, but only flattened out—additional years of
observations will be needed really to tell which is correct. .

Other multiple eurvilinear correlation studies illustrate other lim-
tations to the application of the results secured. Thus in & study
of the price of eggs in New York City, records were secured during
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a period of a few days on the retail sales price of each of a number
of dozens of eggs, and of the size, color, and quality of the eggs.
(The data are given in the problem in Chapter 17.) By determining
the net regression of price upon each of the factors, using the method
illustrated, the net change in egg prices with changes in each of
these factors ean be determined. But it is readily apparent that size,
quality, and color are not the only factors which might cause egg
prices to vary. Prices change from one time of year to another,
because of changes in seasonal demand, in supplies on the market,
and in response to other factors as well. Prices also vary from plae
to place on the same day, and even at different stages in the rdarket-
ing process in the same city on the same day—between sales-apwhole-
sale and retail, for instance, When we say that the results of the egg-
price study enabled us to estimate egg prices to withilf five cents
two-thirds of the time, it must be remembered that“the statement
holds true only for the same universe from whiokthe original samples
were selected. In this case the samples Welje\\ajl selected from salea
at retail, in the New York metropolitan ared, in a particular period.
The results therefore apply only to thesreasons for variations in egg
prices between particular stores, in that/particular city, in that par-
tiewlar period. They might indicate the effect of similar differences
in quality or weight on prices §mii1'store.to store in the same city at
other times of the year, or in other cities; but we could not be certain
of that from this materialéalone. Other studies, covering those other
“universes,” would be zgéded to prove or disprove that supposition;
for the conclusions, offand by themselves, offer no statistical evidence
except for their own yparticular “universe.” For that reason, each of
the final tablessletld indicate clearly the conditions to which its con-
clusions app'iy\éild thus definitely limit the statistical statement of the
results to\the particular ‘conditions which they really represent.

A tegt In actual forecasting of yield. The two preceding paragraphs
stanctfeﬁact]y as they were written in 1929. Now that this book is
being’ revised (in 1941) the regressions based on the period from
1800 to 1927 can be given a severe test, by using them to estimate
the yields during the subsequent 12 years. The necessary data for this
estimate are given in Table 68A.

Estimates of yield for each of these years, according to the final
curvilinear regressions shown in Tables 65 to 67 and Figure 40, are
given in Table 68B, together with the residuals. :

. The new years included years of weather conditions more extreme
than any experienced in the base years. It was, therefore, nccessary to
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extrapoiate the earlier curves in making the estimates. This was
done by extending them with the same slope or curve as in the adjacent
portions of the curve determined from the earlier data.

TABLE 68A

VLD of CoRN, RAINFALL, sND TEMPERATORES IN Six LEADING STATES, 1928 t0 1939

Time Rainfall Temperature | Actusl yield

Year X. in inches in degrees insbushels
X3 X Xy

AN

1928 38 15.1 72.8 (V% 3.4
1929 30 10.6 78,4) ¢ 31.5
1920 40 8.4 76,4 4 25.8
1931 41 10.4 R Al 32.7
1932 42 13.5 ) 76.0 35.4
1933 43 7.2 N\ 77.3 29,4
1934 44 7.5 (A 800 18.9
1936 45 9.8, 76.2 31.7
1936 46 40 £0.90 18.5
1937 47 RN 76.6 36.4
1938 48 3126 76.3 35.9
1939 49 ;"::; 11.7 75.8 41.1

Source: Computed from June,duly, and August records for nine weather stations in (?Of_rl Bel_t
gtates. Stations sveraged inuh%a Kansas City, St. Louis, Toleds, Omahs, Peoria, Cincionatl
Topeks, Indianapolia, and th§ Tows state average, ss in the original study.

N

It is evident(that the regressions gave fairly good estimates for the
first few vears(of extrapolation, but thereafter gave increasingly large
underestimates of the yield. It would appear that the introduction of
hybrid §6ed corn, the possible improvement of cuitivation with better
machitery, the increase of soil fertility and the restriction of cor
tqﬂie better fields with acreage-limitation and soil-conservation pre-
{g;rh.ms after 1933, and other factors, all combined to produce 8 flﬁ“'
“yniverse,” in which the corn yield to be expected for a given c-ombln{l’
tion of weather became progressively higher than it had been it
earlier years. Also, extremes of weather not previously experienced
(such as the combination of an average temperature of 80° Wit'h &
rainfall of 4.9 inches in 1936), which lay far outside the previous
observations, apparently produced results somewhat different from
those in the years analyzed. Even so, the estimates for the years of
extreme conditions (1934 and 1936) were not extremely in error, a3
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contrasted to other ycars in the last five. The doubts as to the cor-
reetness of the trend, as expressed in 1929, have been clearly confirmed
by the subsequent data.

These actual results of extrapolation of a regression formula indi-
cate the way that the conditions of a universe may shift and show the
need of recaleulating forecasting formulas for time series every year or
two, to make sure that they are still applicable.

TABLE 68B ~
Ymrp EstiMaTeD BY CURVILINEAR HEGREssIoNs oN TeREE FacTons, 1923 bo\ 1939
e
: ") iY]
Year | Fuz) | Fs(Xs) | Fied | X O\ v X
1028 0.2 | 327 0.2 | 331 .4C\38.4 0.3
1929 0 33.4 0.3 33.7 31.5 -2.2
1930 —0.2 248 -0.3 24$\ 25.8 1.5
1931 —0.4 33.2 -1.1 g; 32.7 1.0
1932 —0.6 3.0 0.3 (2.7 35.4 2.7
1933 —0.8 2.7 -1.9 {)24.0 29.4 5.4
1934 —1.0 27.4 —9.08{ 17.4 18.9 1.5
1935 —1.2 31.8 w0 30.6 31.7 1.1
1936 —-1.4 21.0 | 5000 10.8 18.5 7.9
1937 —-1.6 327 MN20.5 30.6 36.4 5.8
1938 —1.8 33.3{\| -o0.1 31.4 36.9 4.5
1939 —2.0 3315\ 0.4 319 41.1 9.2
.\\..

The residuals for'the first six years have a root-mean-square error

- ' s AN\ .
( = M\’)bf 2.7 bushels, This compares well with the standard

deviation\oi’ 2.8 for the estimates for the 38 years included in the
study, tf%he next six years, however, had a root-mean-square error
of 5:8bushels. Since these latter errors were all in the same direc-
{ion."the shift in the trend would appear to be primarily responsible
for this increased unreliability.

(For an exercise in curve fitting by this method, the student can
fit a set of regressions to the data for the whole period 1890 to 1?39.
Alse, it would be valusble to fit separate regressions for the periods
1890 to 1920, and 1910 to 1940, and compare the th seta of results.
Do they show a significant change in the relation of yields to the three

factors?)



258 *  MULTIPLE CURVILINEAR REGRESSION

Reliability of Regression Curves

The regression curves show the net relation between the dependent
variable and each independent variable, with the net variation asso-
ciated with the other independent wvariables held constant, for the
particular observations included in the sample. If another sample
were drawn from the same universe, and similar net regression curves
were determined, they would vary somewhat from the curves deter-
mined from the first sample. The lower the multiple correlatirnin the
universe, or the smaller the sample, the larger would be tHig variation
between successive samples. Methods have been devclnpetf?or cstimat-
ing the proportion of such samples which will givpﬂrc‘gression results
falling within given ranges of the true regressipns prevailing in the
universe, (Sce Chapter 18, pages 327 to 340‘).}'1'11 publishing regres-
sion results, as shown in Tables 85 to 63, or\inpresenting charts of the
regression results, such as shown in Figurp40, the reliability range of
the regressions should be indicated, as\'{shown subsequently, Even if
the regressions (as in the example heré) are determined from a time .
“series, and so are based upon allojtl']e evidence for that portion of the
constantly evolving universe, tlie reliability limits may still be used -
as an indication of possihle’ significance, in view of the closeness
with which the relations,e#h be determined. (For a more extended
discussion of the meaging of sampling errors with respect to time, see
Chapter 19, pages 3@3.&} 356.)

Summary. In t\)is chapter methods of determining curvilinear mul-
tiple regressiops‘\have heen diseussed. These show the extent to which
changes in the‘dependent variable are associated with changes in each
particular/independent variable, while simultaneously removing thab
part of‘the variation in the dependent variable which is associated
(linearly or curvilinearly) with other independent variables. . A
methiod of determining the curves by successive graphic approxima-
~tions is presented step by step. Bince this method does not in_\-’ol‘fe

making definite assumptions as to the final shape of the curves, 1t 18
to be preferred to more mathematical methods, presented in a sub-
sequent chapter, unless there is a logical basis for the chojce of speeific
funetions. Methods of simplifying the conelusions for popular state-
ment are illustrated, and the universe to which they are ‘applicable
is briefly considered. _ . . Co
. Correction Note.—Oxn pages 280 and 247 the standard deviations of the re-
siduals, gz, are used to determine whether. the new regression curves show any
* gain in closeness of fit over the previous regressions. These comparisons can be
made most aceurabely by using the standard errors of estimate, adjusted fot %
and m as explained on pages 208 and 261 (eqs. 42 and 65). The suceesave

approximation process should be continued only until the adjusted stan
error of estimate shows no further reduction.



- CHAPTER 15

MEASURING ACCURACY OF ESTIMATE AND DEGREE OF
CORRELATION FOR CURVILINEAR MULTIPLE
CORRELATION "
In presenting linear multiple correlation it was pointed out\that
coefficients could be computed to show (1) how closely estimated
values of the dependent variable, based on the linear regression equa-
ticn, could be expected to agree with the actual values;'and (2) what
proportion of the total observed variation in the ‘dépendent factor
could be explained or aceounted for by its relatign’te the independent
factors considered. These coefficients were, respectively, the stand-
ard error of estimate and the coefficient of 'r'm}ltiple correlation. Ex-
actly parallel coefficients ean be computed to show the significance
of curvilinear multiple eorrelation, emplaying curvilinear net regres-
sions such as those discussed in Ghépter 14. The term “standard
error of estimate” is again usedzbf;f indicate the measure of the prob-
able accuracy of estimated values'of the dependent factor. In measur-
ing the proportion of va iation explained -we will follow the usage
in simple curvilinear coftélation, and use the term “index” to denote
the fact that curvilinedr regressions have been employed. The propot-
tion of variation atcounted for is therefore shown by the “index of
foultiple correlgtion.” ' : ' '
Standard /rfor of estimate. In working through the various
steps in deééﬁnining the net Tegression curves by the method of sue-
cessive dpproximations, in Chapter 14, the estimated values were sub-

tractedifrom the actual values for each observstion, and the refa,ul.ting
" ete., were obtained. The standard deviations

r€8idual values, 2", z :
oPhesc residuals were used as an indication of the accuracy of estimate

for each set of curves. Where a very large number of observations is
employed, such standard deviations of the residuals may be regarded
as an indieation of the extent to which estimated values of the dependent
variable made from new sets of observed values drawn from the same
universe may be expected to agree with the actual wvalue of the depend-
ent variable. Thus if we use 8y s2,3,4) to designate the st'anda.rd error of
estimates of X, made on the basis of curvilinear relations to Xo, X3,
259



£

%

260 MEASURES OF MULTIPLE CURVILINEAR CORRELATION

and Xy, and 2y (5,34 to represent the residuals obtained using the
final curvilinear regressions to estimate the dependent factor, the
gtandard error may be defined by the equation

Stsea.n = 723 123.4) ©3)

If the standard error of estimate for the final regression curves for
the egg-price problem mentioned in the previous chapter were 5 cents,
that would mean that, if other purchases of eggs had been made in the
same territory on the same day, it would have been possibilé fo esti-
mate the price to be paid for each dozen from their physfeal charae-
teristics, to an aceuracy indicated by that standard errgn Two-thirds
of the estimated values would probably have fallen .}i{iihin a range of
5 cents of the prices actually charged. K7\

With the corn-yield problem, the standard deviation of the residuals
from the last set of curves was 2.8 bushels\"In this case no other
“sample” can be drawn from the same “uniyerse” except those included
in the problem, for the universe wag.festricted to the years studied,
1890 to 1927. Extrapolating the trénd line, however, it is fairly safe
to say that estimates made for the-same region for subsequent years
can be expected to have a stgrifi’a’rd devistion of at least 2.8 bushels.
If the trend used did not prowe correet for subsequent years, the errors
might be eonsiderably larger}

The relation showndn‘equation (63) holds exactly true only where
there are a very lafge“number of cases ineluded in the sample dealt
with. Where thé\sample is no larger than is usually available to the
research worké¥, there is a tendency for the standard deviation of 2
to be somewhat smaller than the standard error which would be found
in a very-Jarge sample drawn from the same universe. The smaller
the I,m%ﬁer of observations, the larger the number of independent.
variables included, and the more complex the curves employed, the

geenter will be the tendency for the observed standard deviation

to underestimate the true standard error. This may be illust-rs:ted
by results from an experimental study of the stability of multiple
curvilinear correlation results. In this case a universe of known
correlation was employed, and successive samples were drawt of
various sizes, repesting each drawing a number of times for the samples
of each size. The curvilinear regressions were then determined for
each sample separately by the successive spproximstion method, and

1 This statersent, written  decade ago, may be compared with the actual extré*
polations made subsequently, as shown on pages 255 to 257 of the previous chapter
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the standard deviations were worked out for the residuals in each case.
The entire analysis was then repeated, employing a universe of a
higher eorrelation. The central values of these standard deviations
of the residuals, for the samples of each size, were:

Observed standard deviation of z *
Number of observations
Universe 1 Universe 2
30 1.95 1.53
60 2.18 1.64 ¢\
100 2.91 1.72 0\
Entire universe 2.49 - 1.80

# These values are the median values observed.

7

It is quite evident from these results that the ’sa;?nples tended to
give standard deviations smaller than that which® actually was true
for the universe as a whole and, further, th {/the smaller the sample
eraployed, the greater the overestimate oﬁ the reliability of the esti-
mated values. "

It is therefore necessary to ad;ust the ‘observed ¢, to give Sy ez, 3, 0t0.r
which is an unhiased estimate of S1i79,'s, ete.) fOr the universe from which
the sample was drawn. Thls ad]ustment is given in the following equa-

tion:
i } 0321-{{2 é.em (64}
23etu) = 1 - m/ﬂ
01‘ ‘00 ) 22
 § \ 2
¢ nos =)
82 1.5(2.3 4,atc) = T =

(65)

\s n—m n—m

Where n‘—\ number of observations in the sample
and m = number of constants repreaent.ed (either mathematically

<\, - or graphically) in the regression equation

It will be seen that equation {65) is exactly similar to equation (42}
for the standard error of estimate in linear multiple correlation prob-
lems. For curvilinear problems, however, the value m has a somewhat,
different meaning. Thus in the experimental results just discussed,
three independent factors were involved, so the regression equation
wasg of the form

X1 = a + folX2) + Fa(X3) + fo(Xs)
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The corresponding linear regression equation would involve only
four constants, so m would be equal to 4. For curvilinear regressions,
however, at least two constants would be necessary to represent each
regression curve, and possibly more. In the experimental study each
curve -had only one bend, either upward or downward. It was
judged, however, that the eurves could not be represented by second-
order parabolas, since their shapes did not follow the smooth sym-
metrical curve which that type of function is capable of deseribing.
Instead, it was judged that a third-order parabola would he neces-
sary to give a fairly satisfactory fit to each regression curve> The
conclusion was therefore reached that three constants w oul(L be neces-
gary for a mathematical representatwn of each regressidn etirve. On
that basizs the entire regression eguation would 1opT resent approxi-
mately ten constants, three for each of the three, c‘unes and one for
the value a. (See pages 76 to 81 for other typeawqf‘ curves.)

Using 10 for m in equation (64), we miaywork out the value of
81. 7234 Tor the smallest sample shown in. Qm statement on page 261 28
follows: W
o: ‘j(1‘.95)2 3.80

Sz =
1.7(234) 1 m ' 19 0 667
St 30
= 570
S m}, = 2.39

It is evident, t\>€ this corrected value is much closer to the true
value for the entire universe, 2.40, than was the original standard
deviation of z Za .

Carry@ ‘the same adjustment through for the other values shown
on p§,§&~261 we obtain standard errors of estimate as shown in the
fo}lt‘zmng statement.

2N\ I
) Number of Universe 1 Universe 2
UMBET 0L 4 g he used _
observations ol
n form | Observed | Caleulated | Observed | Caleulst
Tz S]_fmq Tz S]j(‘.’.%)
.
30 10 1.95 2.39 1.53 1.87
50 10 2.18 2.43 1.64 1.83
100 10 2.21 2.33 1.72 1.82
Entire
universe | ......... 240 | ... .80 | ...
__—l—'_'-'-.-—. .
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The superior accuracy of the adjusted values is evident through-
out this table—in each case they come much nearer to agreeing with
the true value for the universe than do the unadjusted values.

Using equation {64} to obtain the standard error of estimate for the
corn-yield problem, we find it necessary first to decide on the value
to use for m.” That problem also employed three independent variables,
just as did the experimental study, and the final ¢, was 2.80 bushels.
Although none of the three regression curves has more than one bend,
none of them is of the symmetrical shape that ean be deseribed by the,
parabola; instead, at least a cubie parabola would be required \fo
represent the curves for f3(X;) and fy(X,), whereas probdbly a
duariie parabola, involving four constants, would he required(to repre-
sent fo(Xo) with its final shape, or three constants with jts}.ﬁrst. form.
The final regression equation for corn yields mightytherefore be
assumed to represent one constant for @, four for ~ﬁ,(X2}, three for
f3{X3), and three for f4(X,), or a total of elevbunih all. When this
value and the number of eases are inserted, in fgrmiula (64), it becomes

_ o (2803
b%_f(g:n) = n = —ﬁ = 11.03
R

8 s = 832 o8°

Although the standard devié.tipn of the observed residuals was only
2.8 bushels, this standardferror of estimate indicates that, in using
the results in making estimates for other years, the accuracy is likely
to be less, even thofigh‘the trend line is correctly extended. Instead
of the estimated ;yalues probably eoming within 2.8 bushels of the
actual values ir B8 per cent of the cases, they are likely to come so
clese in only..;abc;ut 58 per cent of the estimates, and an error of 3.5
bushels wonld have to be allowed to take in 68 per cent of the cages.
In thig ';:particular problem, with 3 regression eurves determme‘d
from38 observations, the correction embodied in equation (64) is
ifgportant. If the same set of conclusions had been obtained from 20
observations, with the same standard deviation of the residuals, apply-
ing the correction formula would have increased the standard error
of estimate to above 4.1 bushels, illustrating again the tendency of a
small sample to exagperate the accuracy of estimate.?

2 As is indicated later (Chapter 19, pages 341 to 347), each individual estimate
far a new ohservation has its own standard error. Those standard errors are sll

larger than the standard error of estimate from the sample. The interpretation
given above for the use of the standard etror of estimate therefore understates the

standard error for new observations.
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Index of multiple correlation. The coefficient of multiple corre-
lation, it will be remembered, indicated the proportion of the total
variation in the dependent factor which eould be accounted for on
the basis of the linear relations to the several independent factors, In
exactly the same way the proportion of variation which ean be ac-
counted for on the basis of the curvilinear relations to the several
independent factors is termed the “index of multiple correlation,”
and is designated by the term P, that is, eapital rho. TFollowing the
definition, and using X{ to indicate values of X, estimated from the
other factors on the basis of the net curvilinear regressions, 3¢ may
define the index of multiple correlation roughly by the eg@ation

PR,

7 s W
p = X N

TxX, D

. T\ )
Tt is more accurately computed, however, by making use of the
standard deviations of the residuals. Using %™ to represent X; — XYy
then LD

(66.1)

With small samples ¢,+tends ¥o be smaller than the actual standard
error of estimate in the univetse as & whole. For that reason, the ndex
of correlation, as computed by the formula just given, tends to exceed
the correlation that detially obtains in the universe from which the
observations are dr\a%n Data from the experiment mentioned earlier

 illustrate this point. The following tabulation shows the modal index

S

N\

of multiple eorrelation for the samples of each size, in comparison with
the true u{ﬁéx of correlation for the entire universe.

AN
N\ .
Nimber of cbservations in sample Observed index of multiple correlation
2N\ )

in samples drawn from same universe
"

30 0.77

50 0.71

100 0.68
Entire universe 0.62

In every cage the observed correlation exceeds the true correlation
in the universe, and the smaller the size of the sample, the larger the
difference. It is therefore necessary to apply to the index of multiple
correlation the same type of adjustment which was applied in obtaining
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the standard error of estimate, if unbiased estimates of the population
value are to be obtained. This may be done either by substituting
the adjusted standard error of estimate for the observed standard
deviation of the residuals in the equation to determine P, or by making
the adjustment, directly in the equation itself. The following fermulas
show both methods.

Y& -1
P =1 - ( 1.f;,3,4))(n - )] (66.2)
: 1
-  f o2 -1 Q)
P2, =1 - (‘T‘wm.a.n)(n ]
1.234 I\ —m A
’ - 2 '\ 66‘3)
-1 (E(zl,f(2.3,4)))(n - 1)] O\
A7) n—m/1 N

The adjusted indexes of multiple correlation'w%jmsk out for the
experimental data as shown in the following statement:

a\J
' 4 $ £ »

Number of ~ . -
observations, » Value used for m :Cfllde- P Adjusted, P

30 10 JSN o7 0.64

50 10 N 0.71 0.63

100 10 T 0.68 0.65

Entire universe e 0.62

Here again the adjustéd'values are found to be in much better agree-
ment with the trug(value for the entire universe than are the crude
values. For thdt ‘féason equations {66.2) or (66.3) should always be
employed in caimilating the index of multiple correlation.

Unless\li3 “index of multiple correlation, as calculated with the
adjustment; is larger than the coefficient of multiple correlation, with
its co\rflr'farable adjustment by equation (47}, there is no gtatistical

¢idemce of significant curvilinearity in the regression lines. Unless
&‘e standard error for the curves is lower even after adjustment, any
reduction in the unadjusted standard deviation of zyf¢» 3 4), 88 com-
pared with o, from the linear regression, would be merely a fictitious
improvement in accuracy. If we take additional variables into account,
or use up more degrees of freedom by employing more constants in
the curves, we obtain a certain amount of spurious increase in the
apparent correlation. Correcting for n and m removes this spurious

effect.
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Once the index of multiple correlation has been computed. by
equations (66.2) or (66.3), the square of its valuc may be employed to
represent the total determination, i.e., to measure the proportion of the
total variance in X, which can be accounted for on the basis of the
curvilinear relations to the several independent factors. To maintain
the samé terminology, this may be termed the inder of total determina-
tion, to distinguish it from the coefficient of total dctermination, which
applies to linear multiple correlation.

The computation of the index of multiple correlation may now he
illustrated from the data of the eorn-yield problem? In thab study
the original standard deviation of the yields was 4.30 Jushels, the
standard error of estimate by linear multiple correlatiow; .87 bushels,
and the coefficient of multiple correlation, after gc}iu':-;ting for the
number of cases, 0.49. The standard error of estimiate for the final
regression curves, as worked out on page 263, wa,}%.siﬁ bushels. Com-
puting the index of multiple correlation by qqué,t.ic)n (66.2), we have

/'

= 52 O — 1
P}gg = 1 — L2 -—)
1.234 U% \ } "
_ | By (g,z)
V4307 \38
= 0.369

) I{izg = 0.61

The index of ‘multiple correlation is therefore 0.81, as compared
with the coefficiént of muitiple correlation of 0.49. The total determina-
tion, wheh/was 24 per cent for the linear relation, has been raised to
37 per eénb Tor the curvilinear. The increase indicates that the lincar
relatiops” did not express all the effect of the three independent
\r;a,(falﬁles, and that taking the curvilinearity of the regressions into
<B;ccbunt- has added significantly to the importance of the factors con-
didered. With such a low determination, however, it is evident that
there are other perhaps more important factors not yet taken into

account.
Measuring the net curvilinear importance of jndividual factors.
No method has been devised as yet to determine the portion of the
index of total determination which can be ascribed to each of the
several independent factors, solely from the methods used in gbtain-

3 Bee pages 225 and 227,
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ing the several regression curves themselves. The final slope and
shape of the curves may be tested, however, by correlating the curve
readings for each observation with the origina! values of the de-
pendent factor, so as to obtain the partial regression coefficients indi-
cated in equation (89), and explained in Chapter 22.

X; = ' + bz folXo)] + bigr 2l fs(X3)] + biararalfa(X4)]

If that is done, the coefficient of multiple correlation, By or3:4/, measures
the total correlation with respect to the several curvilinear functions
(including the final adjustments) and is therefore the index of multiple
correlation, Py 954. It is, however, still subject to the same adjustment
for number of constants as are indexes of multiple correlation ¢oniputed
in other ways, and should therefore be corrected as follow;a*.f.;
n—1L¥

Piosa =1 — (1 — Rzay) -

(67)

Indexes of partial correlation can be dqbeﬁrined with respect to
the curvilinear regressions of the several Qn(’flependent. variables, as
shown in equation (89), in exactly the sme way that the parallel
coefficients of partial correlation areObtained. Since the eurvilinear
transformation relates solely to the\net regression of X; on each of
the independent variables, the~meanmg of the partial indexes with
respect to the separate varighles is open to some doubt.

Summary. For cumljnear multiple regression equations it is
possible to obtain standard errors of estimate, indexes of multiple
correlation, and indexes' of partial correlation, which serve the same
purpose that the\comparable coefficients serve for linear multiple
regressions. Owlng {0 the extent to which the process of fitting the
Curves ma exaggerate the significance of the results, it is even more
1mpurtant,z;9 “adjust the several measures with respect to the number
of obserVatlons and numbers of constants involved than it is with

lineat\multiple correlation.



CHAPTER 16

SHORT-CUT METHODS OF DETERMINING NET REGRESSION
: LINES AND CURVES

In problems where the correlation is fairly high, the nutpber\ of
variables is not too large, and the number of observations\.is rela-
tively small (say not over 50 to 100 cases), net regressidn)lines and
eurves may be determined by a combination of inspectioﬁ and graphie
approximation which takes only a fraction of the 4imie required by -
the methods previously presented in detail’ .This graphic methed
is very speedy, and in the hands of a careful wbrker can yield results
almost as accurate as those obtained by the.lt)}ger methods previously
set forth. Tt must be used, however, withahe same regard to the mean-
ing of correlation results, to the care in)selection of materizl, and to
the consistency of results with thosellogically expected as the other
methods. Tt is subjeet to even meore severe limitations with respect
to the sampling variability oft%he results obtained from successive
samples than are the othermethods. For these reasons the student
should first become tho;ggu@ly acquainted with the preeeding methods,
and their meaning and\Jimitations, and then use this method only as
a more rapid procegure for obtaining substantially the same resuits.

The general\basis of the short-cut method is to select, by inspection,
peveral indivi@al observations for which the values of one or more in-
dependen@riables are constant, and then note the change in the
dependentt, variable for given changes in the remaining independent
variable.” This process is repeated for additional groups of observa-
’ti!.)gla\for which the other independent variable or variables are con-
stght (or practically so) but at a different level than for the first
group, The relation between the dependent variable and the remain-
ing independent varisble, as indicated by a series of sueh groups,
approaches the nef regression line or eurve, since the cases have been
selected so as largely to cancel out the variation associated with other

) 1L H Bean, Applications of a simplified method of graphic eurvilinear correls-
tion, mimeographed preliminary repert, U. 8. Buresu of Agricultural Economies,
April, 1929; and A simplified method of graphic curvilinear correlation, Journel
of the American Statistical Association, Vol. XXIV, pp. 386-397, December, 1924.

268
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independent variables. A first approximation line or curve is then
drawn in by eye, and the residuals from this eurve, measured graph-
ically, are used to determine the regression for the next variable,
cases again being selected so as to eliminate the influence of other inde-
pendent variables, The final fit of the several lines or curves is
tested by the same successive approximation process employed in
Chapters 10 and 14, or by a shorter graphic equivalent of it. Since the
initigl lines or curves approach much more closely te the final net
regressions, and sinee graphie transfers of residuals are substituted for
curve reading and computation of the z's, the process is much shortéx
and fower steps are required. O\
Linear net regressions, The short-cut method for lineagregres-
sions may be illustrated by the same farm-income problém utilized
in Chapters 10, 11, and 12, The first step is to, numbereach one of
the gheervations as listed in the first four columnspif Table 47, page
199, go that they may be distinguished from one andther.
Preliminary examination of inter-relationshins. The next step is
to make dot charts of the intercorrelations of the“tndependent variables,
to see how they are related. Since therghdre three independent vari-
ables, X5, X5, and X, there are three set¥ of such intercorrelations—
X, with X3, X, with X, and X3 ith X,. Dot charts for these
combinations are shown in Fignze 42. In entering these charts, we
identify each observation by its own number, for future reference.
Fxamination of Figure 42'shows & moderate negative correlation
between ecows and aere a{‘ld’men and acres, and a slight positive cor-
relation between cows%nd men. If charts such as these showed
practically perfect eoprelation between any two independent varjables
—all the dots c]ué{a\e_ring closely together along a line or curve—that
would be a wagrﬁi?ﬁg that those two variables were so closely inter-
related that&“\i’ould- be difficult or impossible to untangle the separate

L

cffects ofeach, regardless of what method was used. In such a case,
one ofthe independent, variables should be dropped, and the regressions
fofind Tor the other variable should be stated as the relation of the
dependent variable to the values of the independent vanable retained
and the associated values of the independent variable which was ex-
cluded. Tn this case, the intercorrelations are all low enough so that:

it will not be difficult to separate out the effeets of each one.®

2 Intercorrelation among the independent variables that s high but not perfect
reduces the speed with which the sueccessive approximations Converge toward the
best values, those which would be found by least squares. In such cases many
more approximations may be required to get the best gimulianecus fit.
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The next step is to chart the values of the four variables for each
observation in succession and connect them by lines just as if they were
entries in a time series, as shown in Figure 43. (Classifying the records
in order with respect to one of the independent factors before taking
this step might be advisable.)

Cows -X3

. Men- X
20 T T - T T T T
o Xax; Xz X4
olf [/ . o
. s 3 13
13 N _ N
- a3 '
ol o8 o9 3r %2 v \z‘ o0
.. R n :‘\
i¢ o6
I B PR
ot 418 o7 H LINB
5F - .~.'\\'
&7 I+ "0} » EI.BE —
s )
0 LY e 12,* ':'\Q“l i !
50 160 i50 200 250 508, V100 150 200 250
Acres- X, PN, Acres-X;
Men-X, o W
3 [N I
4+ .1.3,' :" . . X.? X4
O 3
3 o W o & -‘6 -
A \I\q\ i7 9 tl" 20
.”';?’u- ] - 8 . "- .I -
PN\
"\
&/ [ LS 'S‘ & 15 i
7 ) &
¢ : | | L
~N ¢ 5 10 15 20
N\ - Cows - X3

m\./
\ y " Fig. 42, Dot charts showing the ntercorrelations of the independent
variubles, Xg, X3, and X4.

. 'Comparing the different lines in Figure 43, we see that variation
m incomes appears to be more closely associated with variations in
COWS 'tha,n with either of the other factors, (Dot charts of X, with X,
Xl ?mh X, and Xy with X4, might be used instead to reach this con-
clusion.} The relation of X 1 t0 Xy, number of cows, for constant num-
bers of acres and men, will therefore be examined first.
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Determination of first approximation regression lines. From Figure
42 we note that of the farms with the largest numbers of acres, both
farms 2 and 10 have 3 men employed, whereas farms 13 and 17 have
4 and 2, respectively. Accordingly we plot the cows and incomes
{for these farms on a new dot chart as shown in Figure 44, indieating
the number of the farm represented by each dot, and using solid dots.
The placing of these dots does not seem to indicate any marked rela-
tion of income to the number of men; we therefore draw in s straight
line frechand, to fit approximately the change in income with changeg

Acres-X;
200 ’\\
150

A A A .\':\
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VARV VA'AY R

M AR L0

Cows

/
IOOFI
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\

\

1

t t
IncomeX|

£ ) :
1000 A‘ N A
A VAAYAVA
N0 i AN N B D
A 1 3 5 7T 9 11131517
\V " Record number

0§FIGA 43. Acres, cows; men, and income, on 20 farms.
2 8

in coprs) vag shown by these four observations. (The values may be
takeh from Table 69, page 277.)

urning to the small farms, on the XpX,. section of Figure 42,
we note that farms 6, 15, and 18, each with between 90 and 110 acres,
have 1 man apiece; and farms 8, 11, and 20, with 70.’00 110 acres,
have 2 men apiece. Plotting the corresponding observa.tlons a5 hollow
dots on Figure 44, again we have little evidence of any influence of the
differences in number of men. The other small fa,rms,. 4, 5, and 16,
are aceordingly plotted, and & line, est-imabed.graphlcsilly to pass
through the nine chaervations as well as possible, is drawn in as shown.
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Fimally, it is noted that farms 7, 9, 14, and 19 all have 160 to
170 acres, so these are plotted on Figure 44 as crosses, to distinguish
them. The differences in the number of men are ignored at this step,
gince they have been found to have little apparent relatien to the
income in the previous cases, and a line is drawn through thesc last
cases, as indicated,

Comparing the three lines, we see that all have about the same
slope, so & single line is drawn in to pass through the intersection of
the averages of cows and of income, with a slope averaging the slope of
the other three lines. This last line is the first approximatign™o the
net regression of income on cows, with acres and men cm;:sﬁaﬁt. The

Ny

fncome A

b4 \
1200 | ‘ | \

First appmxf}w?gj fo nef reyreis;?; Yne

Relotion indicaled by medviomn N0 %
Siged forms !‘__ 75
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bylorge P o
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Belotron indealfed by .
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0 a3 8 12 16 20
: Mumber of cows ~ X,

Fia. 44. Tncome plotted agiégst cows, on specified farins, and first apptoximation
\ft) net linear regression on cows.
dots for the remiining farms, numbers 1, 3, and 12, are then plotted
in, with t-llejnmnbers to indicate their identity.
For thig mext step, a blank chart is prepared, as shown in Figure
45, ﬁo;ishow the relation between acres, X,, and the departures of
incom®, Xy, from that expected on the basis of the approximate re-
\"igl;ess'ion on number of cows. This chart is coropleted by sealing off
-he vertical dep_arture of each ohservation in Figure 44 from the
approximation line, and then plotting that departure in Figure 45
as o departure from the zero line, with the number of acres for the
same observation as abscissa® The identity of the observation repre-
sented by each dot is again shown by its number. Here, to aid in
identifying Dbsel‘\’?x‘_tidﬁs according to the other independent variable,

*Fora ca;lf’eﬂiéht- and ﬂpe_édy' miethod of 'scéling off and transferring these de-
partures graphically; see pages 479 to-485, . . - - :
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solid dots have been used for farms with 1 man, cireled dots for farms
with 2, and crosses for farms with 3. The 2 farms with 4 men are also
shown as solid dots. The relation of acres to income is new clearly
evident (in fact, were this not a diseussion of linear correlation, fitting
a curve would seem to be justified). It is next noted that farms 4, 5,
6, 15, and 18 have but 1 man apiece, Accordingly a line is dotted in
to pass as near the dots for these farms as possible. Farms 2, 7,10,
12, and 16 have 3 men each, so a line is fitted to them graphically,
as indicated. Farms 1, 8, 9, 11, 14, 17, 19, and 20 have 2 men each,
5o they are designated by enclosing each of them with a circle,and
a Tine is fitted freehand to them. All these lines are of somewhat
the same slope, so a final line is drawn in by eye, averaging, th@ “slope
of the other lines and intersecting the zero line at the ’a})‘sbissa £oT-

S
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ne . .
Fia. 45. Income adjusted §or” cows (by first approximate tegression), plotted

against peres on specifidd farms, and first approximation to net linear regression
Wy 4 on acres.

A% .

responding tu\'t'he" average number of acres. This line is the first ap-
proximati‘t{tﬁ the regression of imeome On acres determined while
holding, eonttant the approximate effects of both cows and number of
men

“"Tle next step is to prepare a chart for number of men and ad-
justed income, as shown in Figure 46. The deviations of the indi-
vidual observations from the approximate regression line in Figure
45 are measured graphically, and plotted in as deviations from f;he
zero line in Figure 46, with the number of men for each observation
as shscisss, The placing of these dots indicates a tendency for in-
come to inerease with number of men. The average adjusted income
for cach number of men is determined by inspection, and indicated
by the small eircles. Then a straight line is fitted by eye so as to
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intersect the zero line at the average of X, and fit these averages as’
well as possible.

Determination of second approzimation net regression lines. The
next step is to check the slope of the previous approximate net regres-
sion lines, to see if any changes are needed, now that the effcct of

|X,'b, xoh X,
frrcorr:e ad jested
oreows L. e e e —
wraf aporosrmahan o 3
andacres ner rgffesszbn fire \

+100 -6 (&J/j::/’/ Q"
o e i3,

) 2 3 4 .
Number of men - "

F. 45. Tncome adjusted for cows and scres (by first appr}»;\lmate regresaions),
plotied against number of men on specified farms, andMiretvapproximation to net
finear regression on mer;.\\;

other factors has been more accurately altewed for. To do this, the
line from Figure 44 is drawn in on Figuirfe 47. The deviations of each
of the observations in Figure 46 arg®hen scaled off graphically, and
plotted in Figure 47 as vertical,.ﬁéﬁations from the line, with the
number of cows, X,, as abseisga The plotting of these deviations
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F%- 47, In_come adjusted for acres and men (by first approximate regressions),

plotted against cows, and first and second approximations to net regressions on
COW3a,

indieates that & slightly steeper line might fit better, since it is found
that, although in the range 0 to 2 cows, 2 dots fall below the line
whereas 3 fall above, in the range 14 to 18, 4 out of 6 dots fall above
the line, and in the range 6 to 8 cows, 3 of the 5 observations fall helow
the line. Accordingly a revised line is drawn in free hand, passing
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through the intersection of the averages of cows and income as before,
and fitting the new dots as well as possible. The first line for the re-
gression of income on acres is then checked in the same manner, by
plotting the deviations from the new line in Figure 47 as deviations
from the first approximate regression on acres (Figure 45). This

Adjusted ;ncome

X-b,E5b,x,
1200 | T
— 5 .0\
) -——-I-“’-f £ R\
e “First opproxemedion fo | LM \
|aet Fegression line '\
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60 100 140 . 180 220 250“'\ 93
Acres X, Il

J1e. 48. Income adjusied for cows (by sccond approximaté’:r\egression) and men
(by first approximation), plotted againgt acres. -

process, ecarried out by graphie plotting jﬁ\'{f}'as ‘before, is shown in
Figure 48. ' PN\%

The distribution of the dots in Figute 48 shows that the observations
are so nearly evenly balanced aboutj{;henline now that no further change
in the line is necessary. It is evident that a curve would fit better than
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for cows andacres
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Fig, 493 “Income adjusted for cows and acres (by second approximate regressions),
\ R .
\ } plotted against men,

the straight line, but for the present we are considering linear relations
only. .

Since no change has been made in the regression for X, all that
remains is to check the first line for the regression on Xy, using the devia-
tions from the line in either Figure 47 or in Figure 48. Plotting these
deviations graphically as before, above or below 2 line with the same
slope as in Figure 46, gives the result shown in Figure 49. Since this
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figure shows no significant change from Figure 46, the Iinc is left
unchanged, and the lnes on Figures 47, 48, and 49 are accepted as
giving the approximate values for b13.24, b12.34, and by4 23, respectively.
If the increases in ineome per unit change are ealeulated from these lines
they come out 29.2 dollars per cow, 1.34 dollars per acre, and 52.7 dollars
per man, as contrasted to the exact values of 26.3, 1.21, and 50.3,
worked out in Chapter 12.  Although the values are not identical, they
are quite close—so close, probably, that the differences between them
have no statistical significance in view of the small number of ohstva-
tions on which they are based. (If a larger number of Suctesive
approximations were used, and the average residuals werg {comaputed
at each step as a guide to the new lines, the final values woéuld come
even closer to the exact values.) _ N

Estimating values of dependent variable. The ‘estimated income
may now be worked out for each farm, eithel(Hy taking readings
direetly from each curve or by substituting the approximate values
found for the regression coefficients in equdtion (39) to determine @,
and then working out the estimates mathe\natically. In either case,
the correlation and standard error could be computed only by work-
ing out the estimated values, calculating the residuals and their stand-
ard deviation and substituting those in equations {42) and (48). The
brocess of computing the estimiifes by using values read directly from
the figures is shown in Table\go.

Caleulating standm;d“?rror of estimate and multiple correlation.
The standard deviation of the 2’ computed in Table 69 is 69.06.
By substituting thi§\value in equations (42) and (48), the standard
error of EStim&te}anfi the multiple correlation work out as follows:

INT g
@ Ny e 20(4,632)
S%‘{Q* n—m_ 15 0%

4 \’ 31_234 = 7609

7N

VoS L Basufn—1 5,790 {19
2 =1__—-23‘*( )= ___’___(_)=
| 1.234 | oF n 1 o7 276 0.798
B934 = 0.893.

The new -standard error of $76.00 compares with that of $74.65
obtained by the regular least-squares method, and the multiple corre-
Tation of 0.893 by the approximation method compares with the value
0.808 obtained by the more exaet mothod. As indicated by these
slightly lower. coefficients, the approximation method is not quite so
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precise, yet for most practical purposes the results are nearly the
same.* : o
The short-cut method applied to curvilinear regressions. The
greatest usefulness of the short-cut method is in determining net
curvilinear regressions. Since the method of successive graphic ap-
_ TABLE 69
CaLovraTioNn oF EstiMatep INcoue From LiNearR REGREssIONS. DETERMINED BY
ArproXmMaTION METHOD

A
Num-| X3 Xz X, X [N
ber | Acres | Cows | Men | Income Fol@s | fo(Xa) | JulXa) Xf\"\.\z
1 60 18 2 960 | —106 | 1,134 | —11 H017 | ~ &7
2§ 22 ¢ 3 830 | +110 | . .612 | +42Y° 764 66
30 180 | 14 4 | 1,260 | + 56 | 1,022 hotod | 1,172 88
4 80 ] 1 610 | — 80 | TBONN62 | 647 | — 37
5 1 120 1 1 500 | — 26 -5{1; —62 | 553 37
6 | 100 9 1 00 | — gadNe7e | —62 | 7e2| 138
7170 6 3 820 | + 43\ 780 | +42| 874 — 54
8 110 12 2 TR0 | N30 964 | —It 914 [ — 34
9 160 7 2 860\ 20 | 818 | —11 | 836 24
10| 230 3 760N +123 | 670 | 42| 835 | — 75
11 70 17 2 AN — 93| 1,110 | —11| 1,008 14
12 | 120 15 3,001,080 | — 26 | 1,081 | 442 | 1,057 23
13 | 240 7 | ¢&N| 960 | +136| 818 +04 | 1048 | — 88
14 | 160 a 9| e 700 | 4 20| #é12| —11] 630 70
15 9% 12,80 1 00| —a6{ 964] —o62| 836 — 36
N\

16 | 110 {4536 3 |-1,130 [ — 39 1,080 | 442 | 1,083 47
17 | 22004% 2 2 760 | +110| 670] —1| 69| — 9
18 | uNt 6 |1 740 — 39| 78| —62] 638{ &2
19 | Ad60 12 2 020 | + 20| 964 —11( 982 - 2
20,5780 | .15 9 80| — 80| 1,051 —11| 960 | —160

proximations presented in Chapter 14 also depends on the convergence
of successive approximate curves, the short-cub method secures results
which are exactly as reliable, at a great saving of time. '

*In fact, the differences between the values obtained by exact soluticn and
those ohtained by the approximsation method are no larger than might readily
occur by chance if the mathematical analysis were repeated on & second sample of
the same size, to judge from the standard errors of the three regression coefficients,
when computed by the methods explained in Chapter 18. '
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The procedure will be illustrated by a problem of four variables,
The same method may be applied to larger or smaller problems equally
well,

The data to be considered are:

TABLE 694
Data ror S8porr-Cor MeTEOD 0F DETERMINING REGRESs1ON Craves*
Year Cost per ton of | Proportion of capac- Average houtly

¥ * finished steel ity operated earning
4 N

X;_ . . X2 X{a\

Dollars per ton Per cent 4 C"gnté per hour
1920 72.3 88.3 AN\ ¢ 77.5
1921 8.5 475 LY w02
1922 57.9 71.3 \NJ 58.5
1923 63.0 88.3 ) 67.0
1024 63.7 69,0, 70,8
) "

1925 62.9 2B 4 70.3
1926 60.3 . N8R0 70.8
1927 50.6 2\ 780 71.3
1928 2 o7 s34 71.8
1929 CBLE W 89.2 72.5
1930 - 5876 65.6 73.2
1951 _ ﬁBa\ﬁ 38.0 70. 8
1932 . ’\\‘31.4 _ 18.3 G0
1933 N, 65.0 28.7 59.0
1934 \ 84.6 31.2 70.0
1935 /1 . 65.4 38.8 - 73.0
13 NV 61.1 59.3 74.0
1987 65.6 71.2 86.0

,*: ¢ dats sre caleulated from regulnr published reports of the 7. 8. Steel Corporation.  See
thryd H. Wylie and Mordecsi Esekiel, The cost curve for steel production, Jowrnal of Political
pomy, Vol. XLVIEL pp. 777-821, December, 1540,

Data, for 1938 and 1939 are also available, but we shall disregard
them until the analysis is completed, and then use them for c¢hecking
the results.

Logical relation of the variables. These dats are from a study of
the relation of volume of steel output to cost per ton. The qualitative
examination ‘of the problem (see dizcussion in publication eited in the
footnote to Table 68A) indicated that changes in wage rates might be
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expecied to have a relative, or mulbiplying, effect upon the cost for a
‘given output, so that the relation might best be examined in terms of:

log X; = f,(Xa) + f5(Xs)

Also, the qualitative examination revealed that major changes in
technical methods of produetion, especiaily the beginning of the sub-
stitution of eontinuous-strip mills for hand mills, had taken place
during the peried under consideration, and that these improvements ,
in technology might need to be included, either directly as a labors
efficiency factor or, indirectly, as a trend faetor. )

To simplify this illustrative presentation, the data will be. used
in absolute values, instead of using the logarithms. The chp,rj;}é will be
examined for indieations of multiplying relationship, however, since
(as is shown in detail on page 296) this graphic method ¢an’also be used
fo spot the presence of such non-additive relations ™\

Conditions on the curves to be drawn. Befape proceeding to the
statistical steps in the examination of thesge giaﬁ; the types of curves
logically expected and the resulting conditions to be placed upon the
shapes of the eurves to be obtained must(also be considered. Without
going into the underlying technical redsons (presented more fully in
the original study), let us assume thag the following conditions will be
imposed: . "}: 3 T

On the net relation of cast to capacity:

1. The curve may falf,)at a declining rate, until a minimum is
reached, and may theh.increase gradually after that minimum is
passed. No points df ¥nflection are expected.

On the net relation of cost to wages:

2. The curv@ywill rise steadily, possibly at an increasing.rate with
higher waged, but otherwise will be fairly uniform—that is, will be
either a_ straight line or a shallow eurve concave from above. There
shouldsbe'no inflections, :

£Onrthe net relation of cost to the time elements (efficiency, ete.)}:

'8/ The curve will tend to decline, perhaps slowly at first and then
more and more rapidly as new techniques are introduced. There might
also be irregular changes reflecting the changes in general price level
(and in various purchased materials and services other than labor)
during the period under examination, especially in the early 1920’z and
after 1929 (Note how this trend factor lumps together labor efficiency,
price levels, and perhaps other factors, each of which might be given
separate consideration in & more elaborate investigation.)
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o . Preliminary examination of inter-relationships among the inde-
pendent variables. " As before, the inter-relationships of the several
independent variables (including time for the trend factor) must be
examined before the short-cut approximations can be begun. These
are presented in Figure 50, the years heing used to designate the
‘observations. After the dots were located, the successive years were
connected by a light line, making it possible to consider the relations
of X4 {time) to X5 and X, as well as of X, to X3, all on this one chart.
(This same method could be used even in non-time-series data, hynfirst
classifying the data on the ascending values of one independent vari-
able. Buccessive observations, by number, would then indig¢ate in-
‘ereasing values for that variable.) . O

Wages ".T
A ¥ T

8o

75|

et

3
60

<& ['3 L l el R
2080 40 50 60 70 80 90
i "\\Pé’r cent of capacity operated - X -
Fie. 50. Wages and¢per cent of capacity operated, with successive observations
connecth&\i'td indicats shift in the XXy relationship with time.

Exami;rii;g first the location of the dots in Figure 50, without
1'egarq Aontheir sequence, 5 moderate intercorrelation between wages
{(X3)vand rate of operations (X,) is evident. No low valucs of Xz
Ar¢ found, exeept together with low values of X5, In the higher ranges

Wf: X the values of X3 fan out more, varying from quite low to quite
high. Apparently there is enough independence in the occurrence of
the two variables to permit of fairly good separation of their effects.

When examined with regard to ‘time;, howcver, the independence is
not so good. The low wages at high output all occurred in one period-—
192110 1923. The marked positive correlation of wages and operations
fl‘:TJI[’_l 1930 to 1987 is also a correlation with time, both generally de-
Gll}llng from 1930 to 1933, and both rising from 1933 to 1937. Sinee
this was the period when technological changes were greatest, it may



FIRST APPROXIMATION CURVES . 281

be difficult o disentangle the time or trend elements here, reflecting
these technological changes, from the effects of the associated advances
in output and in wages. We shall have to be on guard for this as we
proceed with the analysis. _

Looking for groups of observations which hold the other factor
constant, we note on Figure 50 that there were a considerable number
of years when wages  fell between 70 and 75 cenis per hour. These
ohservations for these years may be used to hold wages substantially
constant, while the data are examined for the apparent effects .of
cperation rate and time. : ' : -

Determination of first approximation curve for first indgpendent
variable. The observations for the years with wages of 70 {0)75 cents
are accordingly plotted on Figure 51 with percentage capgaelity--operated
(X,) as the abscissa and cost per ton (X;} as the, Grdinate.® After
the dots are plotted, successive ohservations (whed"they occur in this
group) are connected by light dotted lines. This epables us to examine
the relation of cost to operation rate and 'tim\e while holding wages
constant, ' v ,\ o -

These observations indieate at onceié~markéd negative correlation
between operation rate and cost. The\date from 1924 fo 1929 suggest
a rapid fall in cost for a given raté; especially from 1927 to 1929. Ap-
parently there was some furth@® decline from 1931 to 1934, but the
data for 1935 to 1936 fall almost preeisely on those for 1930 to 1931.
{However, examination pf,\Figure 50 shows that wages were .slightly
higher in this latter Period; which might obscure the trend factor at
this point.) No cuxve is indicated as yet. Accordingly, a line is drawn
in lightly, as iridi€ated, to show the relation of cost to operation rate
for these obsetwations, with the trend factor also considered.”

B “Wage rdtés per hour” is guite a different thing from “average earnings per
hour empleyed,” since the latter is & weighted figiire reflecting all changes in the
Cﬂmpﬂ\sitiﬁn of the lahor foree. The latter is the figure used here (note Table 69A),
Eim? o average wage-rate figure was not available. For brevity, however, the
thent “wages” will be used here to describe the data, even though that is pot the
technically correct designation. _

& Great care should be exercised in plotting these values, as their exact loeation
becomes the basis for all the successive graphic transfers, Chart paper of adequate
size to scparate the dots should be used. o
"By drawing this line parallel to the'l
is eliminated except the one-year change.
than the line connecting suceessive years,
rection for the year-to-year change, also.
after 1931, however; that was not done here,
mations to elarify.

ines connecting suceessive years, all trend
If the line were tilted glightly steeper
that would provide an approximate cor-
With the uncertainty of trend effecta
but was left. for subsequent approxzi-



-

282 GRAPHIC METHOD FOR MULTIPLE CURVILINEAR REGRESSION

The observations for years of very low wage rates—1921, 1929,
1932, and 1933—are next plotted, and conseeutive Yyears again con-
nected by dotted lines. Both show exaggerated drops in costs with
inereases in output. Only 1933 shows a cost lower than might be
expected from the observations previously plotted. If 1932 were also
to show & cost below the usual relation, the regression curve would
have to swing up sharply, so as to pass above it. The high value for

Cost per ton W™
XI . 32 1 T T T T T L EY D))
T ... 21 ."\ T
“\ First N7
75 | N\ approximarien 4
72 (Xz’)\ T e20
70 - .
65~ . ]
A 23
60 - SR\ G-z -
; P 922
_ Apparent retorion NN
SO Aor years with 70 #o 75 _’%..;{2\3 g
L wgloe Ny
r r@ !rafe]g ! I I

10 20030 40 50 60 70 80 90
) o-Proportion of capacity operated -X;

2\ :
F‘IQQQL Cost per ton and per cent of capacity operated, and first
N\ approximation to fa(Xs)},

AN
ggm"may be ignored for the moment, as possibly reflecting the high
price levels at the end of the first World War inflation.

The two years of high wages--1920 and 1937—and the one remain-
ing year of modersately low wages, 1923, are next plotted. The dot
for 1937 falls above the other observations, and that for 1920 much
higher still, apparently confirming the unususal (trend ?) faetors affect-
ing the position of the 1921 observation. Similarly 1923 is fairly high,
despite its moderate wage rate, as compared to subsequent years.

The evidence as to wage rates, to this point, sums up as follows:
1920 to 1923 all show relatively high costs (with the exception of
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1922}, Apparently trend elements outweighed the effects (if any)
of the low wages in 1921 and 1923, With low rates, 1933 shows quite a
low cost for the low rate of output, whereas 1932, with somewhat
higher wage rate, shows a much higher cost. Apparently the fall in
output to near zero increases cost very greatly per unit. On the
basis of these congiderations, a eurve could be drawn in ag the first
approximation, extending the previous line but bending it up to pass
well above 1932, with its low wage rate. With only one or two observa-
tions to support that bend at this stage, it seems best to be mor

conservative until the other factors have been moere definitely allowed
for, and until the evidence for a curve (if any) is more clearly esiab-
lished {even though a curve of declining costs was expected.} ™

Accordingly the straight line previously drawn in hghtly is ex~
tended and used as the first approximation toward the’agt fegression,
f3 (X}, (If a curve had been clearly indicated by j:hg‘s examination of
the data as described above, it would have been drawn in at this point,
thus starting the suceessive approximations erni a curve instead of
from a straight line.) \‘

Determination of first approzimation @yrve for second independent
variable. The noxt step is to examiyg, the relation of costs, as now
approximately corrected for the relad;icm to operation rate by f,(X5,),
to wages and time. Accordingly,y ‘the vertical departures of the dots
on Figure 51 from the line off; (Xg} are scaled off, and are plotted in
Tigure 52° The departurcs\are plotted as ordinates, with the values
of X5, wages, as abscis g At the fourth variable, X4, were not a time
serles, or not arranged in order, it would be necessary to group these

bqervatwns accorglmg to its value, also, as was done in plotiing
Figure 51. Sinck the numbers of the successive years indicate the
successive valuds of X, that is not necessary. After the dots are all
plotted, tho?sﬁccesswe vears are connected by a light dotted Iine, to
aid in separatmg the trend influences from that of wages.

¢ the dotted line to the successive years is followed, it is apparent
that there was a general downward trend in the adjusted costs. The
vears 1920 and 1921 appear on one level, the years 1922 to 1927 on a
lower level, and the years from 1928 on- (with the exception of 1932)
on a still lower level. Tn each of these groups of years there is a
positive relation between adjusted costs and wages, a8 indicated by the
light lines drawn through each group. Only the last group has any

8 As with the lnear shortecut method, the job of making these readings and
transfers can be made swifter and more accurate by using the technique out]med
on pages 479 to 485,
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indication of a curve, Even there, the curve depends entirely on the
position of the two extreme observations, one at each end. Here, how-
ever, the lower portion of this curve parallels, almost exaetly, the lines
indicating the apparent positions for the two other groups, which in
turn lie mainly on the left half of the lower group of observations.
Furthermore, the shape of the curve—shallowly concave—is consistent
with that logically expected. Accordingly, a shallow curve passing
through the center of the observations i1s drawn in, approximately
paraileling the apparent lines and curve representing the relatiofis, for
the three groups. The succeeding successive approximations willshow

I G_a.: K . ¢ \,,' :

Cost adjusted for operation rate \ )
: T T T T T T e
. . & Ny N
Apparent relation For S0~ 2 =y A
s ¥4
5 - o " -
2
+10 L+ - -

. st
aeproximatien
curve, 7y (X3)

/
Agparan? refafion &
for 22- 27 A\

+5

-5 b . Apoarent refation
for 28-37 =
33 8- - - e m
- 10 <k - H 1 | 1 i [
B85 p X 60 &5 To 75 -3¢] 85 20

O\n . wages-x’
Fig. 52. Wagewand cost per ton adjusted to average operation rate on the basis
‘\a&the first; approximation, and first approximation to fa(X3).

whetler this curve ig justified or whether a straight line should be
substituted. S -

"/ Determination of first approzimation curve for third independent
variable. The next step is to examine the relation of costs, now ap-
proximately adjusted for both wages and operation rate, to time. Ac-
cqrding]y, the vertical departures of the dots on Figure 52 from the
curve f; (X3) are scaled off, and are plotted in Figure 53. . Again the
departu.res are plotted as ordinates, with this time the values of X4
as abscissas, Since this is the last independent variable to be con-
sidered, it is not necessary to group the observations with respect to
any other variable but all can be plotted and examined as a whole.
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Figure 53 shows the resulting chart. Connecting the sucoessive years
makes it easicr to study the $ype of trend present.’ S

Except for the single wide departure in 1932, Figure 53 indieates
a definite downward trend from the beginning, tapering off about 1930
and running flat or gradually rising thereafter. Taking midpoints
between each pair of observations (indicated by the crosses). helps to
locate the approximate level of this trend. The one extreme departure,
1932, is disregarded in the process. Its pqsition in Figure 51, at the

X, (Xo)-F () RN

Cost adjusted for ' <O

operation rate and wages ' O

First approximation '\Z’t' '
+107 / curve, 4 (X3) Q -
+ 5 |
O i

-5 ) -

-‘0 1 { [ e 'ri:"’\f 1 | . | S R L
'20 ‘22 ‘24 '26 '28 '30 '32 '34 '36 '38

&~ Year- X4

Fia. 53, Tim 'QN cost per ton adjusted to average operation ra_be and wages,
on the basi‘&bf, the first approximation curves, and first approximation to fe(X4).
O

extrenig'end of the line, meant that its adjustment for X, was in doubt.
A"’Slﬁf\joth curve is then drawn in, declining to about 1930, and running
fiat/thereafier. The rising trend indicated by the observations for 1936
and 1937 is left for subsequent approximations to confirm. In general
it is unwise to give an extra “twist” to a regression curve simply on
the evidence of one or two observations.

91f joint functions are suspected (see Chapter 21) the data might again be
grouped for values of Xz and X3, in plotting Figure 53. If these groups showed
varying relations to X¢, even after the approximate relations to X2 and X3 had
now been eliminated, that would indicate the presence of & joint relation. Nate
Figure 57, and the discussion on pages 206 to 299 of this chapter.
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Determination of second approximation curve for first independent
varigble. We now have determined first approximation lines or curves
to the net regressions of X; on X,, X3, and X,. The departures of
the dots on Figure 53 from the regression line f; (X,) are the residuals,
2", from this first set of curves. The remaining steps involve the
graphic transfer of these residuals to each curve in turn, the correc-

Cost per fon
X T T - T ¥ T T ] 1
80 - , 32 * Orygine/ observartions A
© Observations corrected fof \J )
) Q\ 73 (&3 ) and K (XN

B85 [- & ’ O Group everage of gqr;écfed —

V\ Third| approNimation odseriationsd N

g / corve, 177Xz ) X Observations corrected for
sofF - 32\ 15" (X ) aad & (ZXy)

Ty a2t 4
.
N Second goproximation )

75 L curve 57 (X J’x:‘{{' -

Xt AW _ v20
70 fm . ’:. —
PR
-1 Y
65 - 3., M35 wy -
YA ) .23
6 9 b First ﬂ,&.w{‘o}x}rmﬁan =
f‘t*( 2) ° - to 23 -
. \"\ :
N 9»—20
55 |- oY ~ 2
A\ ¥ . 529 N
’\: \ 22
~ | ! it
80 — f 1 ] | | S
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T & Propertion of capacity operated - X,

T,

Fra 54 Per cent of capacity operaied, and cost per ton unadjusted and adjusted
éQ ayerage values of other variables, and second and third approximations to fa(Xz).

" tion of each curve on the basis of the fit of the new residuals, and in
turn the transfer of the newly corrected residuals to the next curve,
and so on until no further change is indieated in any of the curves.
Ox:d'{narily the residuals from Figare 53 would be plotted back on the
original curve for X,, Figure 51. To show the process clearly, however,

the dots and the first approximation curve for fo(X;), from Figure 51,
are reproduced again as Figure 54.
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The vertical departures of the dots on Figure 53 from the approxi-
matien curve, f,(X;), are then plotted on Figure 54 as departures
above and below the regression line, fi(X5), with the corresponding
values of X, as abscissas. To prevent confusion with the original values
shown as solid dots, the corrected values are indieated as hollow dots,

It is at once apparent, on inspection of Figure 54, after the cor-.
rected values are all plotted in, that the new values show much less
seatter than the original values. Closer inspection reveals that every
one of the adjusted observations below 60 per cent of capacity falls
above the first approgimation line, with a single exception. In‘the

2\N
b1k S FYRTHZ o9 SN N\ ¢
Cost adjusted far other variables N

T T T T T T Z <\
Seacond approximarion curve, £5 (X} #l/
o S
*5 |- -
0 4
=T W
= A ONe Dbsarvations corrected for
3G\ (X} ond £ (Xy)
-5 - ¥33 ~ :' O Grows averages of above ]
~ obiervations
& ) » Observutions corcected for
- F(T,) and Fy (Xl
-10 ] ¢e\L 2 I ! ! |
55 80 X 65 70 75 80 85 20
X wages - (X3)

F1a. 55. Wages, 4nd cost per ton adjusted to average values of all other
varia.b%g;a.nd second and third spproximations to fa{Xa).
& _
range frqm}ﬁi) per eent to 80 per cent, three cases fall below the first
approximation line (two widely) and three slightly above, indicating
in this)range that the new line should be lower than before. The five
observations above 80 per eent fall two below, two about the same
distance above, and one right on the line, indicating that the position of
the line here is sbout correct. These departures confirm the sugges-
tion previously given by the 1932 value in Figure 51 that the regression
should be a curve, concave from abaove. This accords, also, with the
logical eonditions originally imposed on this relation. Accordingly
such a curve is drawn in freehand, passing as near as possible through
the averages of the adjusted values in each successive group. (:I‘o
facilitate drawing the curve, the average of the residuals in successive



288 GRAPHIC METHOD FOR MULTIPLE CURVILINEAR REGRESSION

ranges of 10 to 15 units of X, are estimated graphically and drawn in
as hollow squares.) :

Determination of second approvimalion curve for second inde-
pendent varigble. The vertical departures of the adjusted values
(the hollow dots) above or below the second approximation curve,
J5(X3), are next scaled off graphically and plotted as ordinates from
the values of the f3(X3) curve, as zero, with the corresponding X,
values as abscissas. This is generally done on the original X X, ehart
{Figure 52),. For clarity, however, the curve of Figure 52, ig\here
reproduced on Figure 55, and the departures from Figure 54 are\trans-
ferred to this new chart. The four observations around 80 for X,
average definitely below the line ; both the next group up.%o 72.5 and
the next group 72.5up to 75 average slightly below, wilitreas the single
ohgervation above 85 falls above the line. These, aVerages are indi-
cated by squares on Figure 552° The single higly bhservation at the
end alone would not be enough to indicate & olange in the curve, hut
it is consistent with the group averages, which indicate the nced for
a slightly steeper curve than the origingl ene. Accordingly this new
curve is dtawn in, approximately thtough the group averages, but
still eonforming to the conditions stated on page 279. To this point
none of the relations, as indicated by the data, has differed sufficiently
from the shapes logically expedted to require any reconsideration of
the logical analysis from which the conditions limiting the shapes to
be drawn were derived. &\

Determination. of \KB(:Ond approzimation curve for third independent
variable. The same\proeess is used in determining the second approxi-
mation for the next variable. . The vertical departures of the dots on
- Figure 55 ahoké or below the second approximation curve, fi(X3),
shown es a-d&shed line, are scaled off and plotted as departures from
the f ;{%Q\éurve, with the corresponding X « values as abscissas. Again
& neyaghiart is prepared, Figure 56, with fi{X4) reproduced, although
the-?riginal chart, Figure 53 (on bage 285), is still clear enough so that
‘theése new values could readily have been plotted upon it. Again,
as the observations are equally spaced in time, a eontinuous light line
13 drawn.in; connecting the successive observations.

. If the-curve were any ordinary function—anything except a trend
al-l_@wance for a number of unrepresented factors—there would be little
evidenice, from the dots in Figure 56, for any further change in the
fitted - curve. . Since it is a trend allowance, however, and was ex-

1% These ‘averages have been estimated graphieally, by the technique explained
on page 485, e
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pected to be irregular on logical grounds (note the conditions stated on
page 279), more flexibility may be in order. Comparing Figure 56
with Figure 53, we see that the observations have been changed only
stightly by the further adjustments for f,{X,) and f3(Xs). - The
individua! observations on beth charts show a pronounced fall from
1920 to 1924, 5 flattening out then for three or four years, then another
fall to 1929. Between 1923 and 1927, Figure 56 shows that 4 out of 5

X5 ()~ (X3) _ s N
Cost adjusted for = : _ o N
‘operation rate and wages L 2%
T T T T ¥ T ™ _
+]5 o Observations corrected o™ -
A £ (&) ond 5 (B0
+10 R \ x Observations corrected for -
(X, and £{5C)
.5 M L |
. B NS R Frrst
A\ approximation
0 _ T X curve, ﬁ,’ﬂ)’},)
-5 b Secona/\“ Ny \\._’I. - oo
| opproxim@fion ¥ FIIRTT
=10 | curve, ;‘X\(Xy) 'T. o .‘}f\?,' . A
1) 1 _ . _
120 222 '26 '28 ‘30 '32 34 '36 38
. \'\“ Year-Xg4 S B

Fre. 56, (["kne, and cost per ton adjusted to average operation rate and wages on
" bagiy of sécond approximation eurves; and second app;oximation to f;(X.;.)._ :
‘ebgervations fall above the f,(X4) line, whereas; between 1928 and
1935, 6 out of the 8 observations fall below the line.- These depa_rtures
indicate that some changes in the first curve are justified. It 18 ap-
parent that these changes would not be ineonsistent with ‘the possible
composite effects of price-level changes and a general downward trend
in production efficiency. The sharp falt from 1920 to 1924, however;
largely reflects the two high observations for 192_(_)_a_nd 1921, offset
somewhat by a very low observation in 1922. Accordingly, the trend
may be interpreted as moderately downward from 1920 to- 1926, more
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sharply downward to about 1929, then gradually tapering off to a low
about 1933 or 1934, and rising gradually thereafter, A more flexible
trend i therefore drawn in according to these general changes but not
following single observations to the extremes of their departures.
Determination of third approzimation curves. The same process
as before is now repeated, plotting the departures from f/(X,) around
the f(Xs) curve, with X, values as abscissas. This time the new
departures shown on Figure 56 are plotted back on the previous chart,
Figure 54. Crosses are used for the new departures, to distinguishthem
from the previous values shown s hollow dots, To prevent confusing
the chart, the observation (year} number is not shown witH the CrOss,
except: where there are two or more observations with ahout the same
Xgvalue. | AN
‘Examining the location of these new crosses 7on” Figure 54, we
notice that, for every observation with a valuesbglow 50 for X, the
CTOSs 13 one to one and one-half units (of X3 higher than the cor-
responding dot. For values of X, above 5@, however, the crosses fall
alternately above and below the c'orrespon'ding dots, with the averages
of the crosses hitting just about the curve: ‘This pattern indicates that
the f(X,) curve should be raised\ somewhat below 50, to be still
steeper. Accordingly, a new cury@ds drawn in; changed as indicated,
to pass as near as possible theotigh the group averages of the crosses

(as graphically estimated) ang et conform with the logical limitations
on its shape. RS _ '

The vertical depari{ire’s of the erosses from the new curve, 7 (X,),
are then carried fgrward to Figure 54, as departures from . 7 (X3}
Again crosses arp,used to represent, the new values, -

- Inspection B¢ Figure 55, after the crosses are inserted, -discloses
4 different githation from that in the previous chart. In the left por-
tion of Figure 55, for values of X 3 below 65, the crosses fall very close
to the\eotresponding dots, with no change for the average. In the
rightshand portion, for values of X3 above 75, the crosses also fall
&hove and below the corresponding dot.  Between 65 and 75, however,
avnumber of the crosses fall g considerable distance below the cor-
rfasponding dot, so that out of the twelve observations in this range,
Sl'X' crosses fall slightly ahove the 7" line and six fall a considerable
distance below. This pattern indieates that the " curve should he
made more sharply concave, without changing the elevation of either

1n _0nly ip Tare i_nst_gnces would a curve with this much flexibility be jiIStfﬁ‘?d-
In thL‘s partlcl{lg_r 0488 1ts use is in line botk 4with the theoretical analysis and the
tesulting conditions mposed on the shape of the curve, C o
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end. A new curve is therefore drawn in to correct this, through the
group averages of the crosses. (To prevent eonfusion, these averages
are not chown on Figure 55.) The sharp lift in the last portion of this
curve iz dependent only upon the two observations, 1920 and 1937.
Howevcer, the shape of this part of the curve is consistent with the
logical Jimitations and with the other observations. Except for these
two ohservations, a straight line would fit the crosses almost as well as
the curve, The evidence for the existence of a curve, or for its exact
shape, is thus very uncertain, as the data are distributed here® .
If the f” curves are compared with the f” curves on both Figure\54
and Figure 55, it is evident that we have determined the shape(of these
curves aboub as well as we can with the data at hand. Even\with the
material change in the trend by using the much mone,ﬁékible purve
of f (X,), the differences between the f” curves andvthe f*' eurves
for X, and X5 are insignificant. However, to,edmplete the process
we carry the final residuals, the departures of the grosses on Figure 55
from the %7 (X3) curve, over to Figure 56, ag.departures from the trend
line f7 (X4). RS
There is no improvement in the average closeness of the crosses to
the trend line, f7 (X,), as a result,of the slight changes in fo and f3.
The general characteristics of the“trend,. as fitted by the previous
flexible curve, remain the same) “From 1923 to 1930, every cross falls
slightly above the corresponai’ng dot, suggesting the possihility of a
slightly better fit if the ttend was raised a little in this portion. The
single high value in ]&.’}.‘léont-inues to stand out, alone and unexplained.
It seems hard to justify it on any trend basis, We could eliminate
the wide depagrture-for 1932 by twisting the lower end of f2(Xp) up
sharply to paks ~\through this single observation. In the absence of
confirmatorylévidence from another such low year for percentage of
capacit, Qipe'rated, thig would be a risky assumption.
Alfhdugh it would be possible to modify the trend further, as sug-
gestad in the preceding paragraph, it seems best to let it stand un-
{chinged. Tn view of the slight changes in the f, and f; curves in the
last approximation, we end the successive approximation process at
this point, feeling we have carried the process about to the point of
diminishing returns in increased accuracy. -
It should be noted, in Figures 54, 55, and 56, that the fina] eurves
at the end of the approximation process differ significantly from the
12 Bee page 338 of Chapter 18 for the _samﬁling reliability of the portion of a
curve determined by such extreme cbservations, where the theory of random sam-
pling may be properly apphed. - o
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first approximations only in the case of fa{Xp). Almost the same

. flexible trend of f{ (X,) could have been drawn in the first approxima-
tion on Figure 53.. The closeness with which fi (X3), f,{Xy), and
fi (X3} approximate the final eurves is an indication of the great
power of the graphic method in making a rapid approach to the under-

+ lying relations. The routine of comparing- selected observations for
which the values of the other independent variables are constant, or
almost so, and judging the net relations from these selected com-
parisons provides & much cloger initial approximation to the final

 turves than does the initial assumption of linear net regressions, used
a3 the starting point in the suceessive approximation procesg presented -
in Chapter 14. "\

(For an ‘exercise, the student might take the example which has
just been analyzed -and determine the net regresgion turves by the
method of Chapter 14, using the same Iimitationsfdh the shape of the
curves as used here. That will enable him b ¢ompare the relative
speed and effectiveness of the two methodg\ih- approaching the final
eurves,)

As already noted the intercorrelatians’among X,, X, and X, were
only moderate in this case. In a problem where the intercorrelations
among the independent variableg were quite high, the improvement
in the fit of the several regression curves ag a result of the successive
approximation process might be more marked than it was in the ex-
ample just eompleted. Ab.Buch a ease the convergence toward the
curves of hest fit witl e slower than where the intereorrelations are
low, and a larger, nwhber of successive approximations will be re-
quired to determifg’the final curves, o

If, after Sf?"él‘él approximations have been made, the new curves
Blart swingifiz"up and down over curves previously determined, the
approximétibli has probably been carried far enough. Especially where
the iptpﬁorrelations for two independent variables are very high, &
risg.dnthe slope of one eurve will cause a fall in the slope of the other.

Irx stich a case the exact position of each of the two curves-is inde-
terminate, and the zone within which the last two or three approxi-
mations vary will indieate something of the uncertainty as to the
exact shape or loeation of each curve, . As will be shown later (Chapter
18}, the reliability of any net regression line or curve varies inversely
Wwith-the extent to which the particular independent variable is cor-
__relai;__gd with the other independent variables, Where two variables
are 80 closely correlated that the relation to the dependent variable
may be aseribed to either independent variable or parceled out be-
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tween the two, their individual effect is indeterminate. Only by secur-.
ing & large enough sample can the true influence of each be judged.
When a large enough sample eannot be secured, that is the inherent
fault of the data and not of the method employed.- When used with due
regard to the logical significance of the curves obtained, any one of
the several methods will tend to give results which are substantially
the same—that is, whieh lie within the range of possible accuracy
imposed by the faets of the particular sample. -

Determining standard error of estimate-and the index of multiple,
eorrclation. The standard error of estimate may now be determined
by first computing the value of o ,,. This ecan be done most simiply
by sealing off, on Figure 58, the departures of the last adjugtaﬂ‘ values
{the crosses) from the final trend eurve. These departuresare the z""s.
Any errors which have been made in any of the sugééssive graphic
transfers will accumulate in these residuals. A moué'éxact check can
be made by reading off the catimated values for espl observation from
the final curves and adding them up tfo calqula}e the estimated X7’
and 2", aceording to the same method weed in Chapter 14. The
2" values a8 cormmputed in this manner should agree closely with the
2% scaled from the final approximation chart. These caleulations
are shown in Table 69B. RN, '

Column 10 of Table 69B givesthe residuals as scaled off from the
last approximation eurve on Figure 56. Column 9 gives the residuals
as computed in the usual way from the several curve readings. It is
evident that the two cohkfniis agree very closely, the largest diﬁerepce
being only 0.4. Thisds,an indication of the degree of accuracy main-
tained in the suceefdive graphic transfers. In this ease graph paper
8 by 10 inches was’used in preparing the charts for Figures 51 to 56,
and cach of 4hé” transfers was double-checked. If higher accuracy
in the mechanical process is desired, a still larger scale could be em-
ployed. 25 ' ‘ *

Taking the residuals in Column 9 as the most accurate, we may
now galculate their standard deviation (around their own mean}. It
works out at 2.88. This compares with a standard deviation for X
of 7.19. . _ '

Before computing Sy, 3, 4 2nd Prags, we need the values for n
and m, A simple parabola or hyperbola with two cqnstants 'WOI.'{.Id
probably represent f3'(X5) and fy (Xs). However, fi(Xy) with ifs
two inflections would probably require at least three constants. In
addition, there is an @ constant, represented by the mean of the 2! ’s.
Altogether, then, it would probably take eight constants to fit mathe-
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matieal curves to the regression functions graphicélly determined,
Accordingly, n = 18 and m = 8, With these values, we can now
compute S and P by equations (65) and (66.2).

noty  18(2.88%)
n—m 18—8
Si.fiza4 = 3.86_2
_ B2 j0mm (1 — 1 14.9209 (17
P}gse = 1 — “HE2D (‘—) =1 18/~

St rean = = 14.9200

of n (7.19)% \18
= 7272 \
_ 2\N
P; 234 = 0.85 N\
TABLE 69B g
. Pl
Cavcursrion oF EereMaTeDp X)) rroxm FivaL REaresston CURVES
N\
Year . re ", Z{ fafNE 2 z
b b OO A AR A SR A o el 1 g .
Xy +asX; {8-T)
P @ (3 (4 )] () G & ) (10)
1920 | ss.3 | 775 57.1 2.0 97,4 Y7 2.3 0.6 0.9
1921 475 60.2 67.8 | —1.8 &N 74.1 78.5 4.4 4.4
1922 71.3 58.5 605 | ~2.1 &5 64,9 5.9 | —7.0 | —7.0
1923 £5.3 67.0 7.1 § —-0.3 [y 4% 61.7 63.0 1.3 1.5
1924 ] 69.0 T0.8 61.0 1089 3.4 G5.4 3.7 | —1.7 | —-1.8
125 t 784 [ 703 | so.r | O™ | 19| 618 | ezs 11| o8
1928 58.0 70.8 57.2 soT0 0.5 | - 58.5 60.3 1.8 2.1
1027 7RO 71.3 59.0 1.2 1 —-1.% 58,6 9.8 1.0 1.3
1928 83.4 71.8 588" 1.4 { —3.7 55,8 55.2 | —0.6 | —0.5
1920 80,2 72.5 | &7y 1.8 | —5.4 53.4 51.5 | —1.9 | —1.7
M\~ .
1930 B5.6 7332 N Bl.o 22z ] ~6.3 57.8 58.6 0.8 1.0
1931 48.0 To{8N] 72.2 1.0} —6.9 66.3 65.6 | —0.7 | —0.7
1932 18.3 | &Y 846 | —1.7 ] —7.5 75.6 81.4 5.8 5.9
1933 28.7 ANBY 0 773 1 —20 ) —-7.5 67.8 650 | —2.8 | —2.8
1934 31.29M70.0 75.8 0.7 | —7.2 69,1 646 | 4.5 | —4.1
'..\;" .
1935 ’\{2»8 73.0 § oTLY 20 | —7.0 66.7 65.4 § —1.3 t —1.1
1036 4N\ 3 74.0 83.5 ‘2.6 | —-6.4 50,7 1.1 1.4 1.3
ledgydmie | 86.0 | 803 | 11.0 | —5.4 66,1 65.6 | —0.5 | —0.8

,..\3 ’:\{'hes.c are the values of = zealed off from Figure 56.

The multiple correlation 0.85 is still close, even after the adjust-
ment for the number of observations and constants, The standard
error of estimate works out at $3.86 per ton. This indicates that if it
were possible to measure this same relationship between other factors
and costs from a very large sample drawn from the same universe,
the errors in estimating steel eosts for the observations in that large
sample would probably have a standard deviation of $3.86.1

*2 Bee pages 341 to 356 of Chapter 19 for the errors of individual forecasts and
for the application of error formulas to time series.



SHORT-CUT METHOD APPLIED TO CURVILINEAR REGRESSIONS 205

Estimating cost for new observations, We can now use the data for
1938 and 1939, which we have disregarded to this point, to work out
estimates for those years from the regression curves, by the same
process shown in Table 69B. The values are: '

Year | Xo Xg {fi(X) | fX) | fiXy | XV X, 2

1938

40.0 73.0 14.5 —4.3 83.2 80.5 | —2.7
1434 1.7

63.1 14.2 -3.0 74.3 76.0

=1 12
e
=
~y

36.
G0, \\

Just as in the similar example in Chapter 14, it is nceessﬁr}‘ to
extrapolate two of the regression eurves beyond the bage‘:data in
making this estimate for subsequent years. In spite of theatditional
possibility of error whieh this introduces, both of the/zew estimates
show residuals no larger than $ ,,5,. This ifidicates that the
changes in steel costs during these next two yeals were in general
related to the same factors as during earlier, .yérs and to about the
same degree. (The student can check this eenclusion by adding these
two new observations to the original daffy¥and re-analyzing the re-
sulting sample of twenty observationgahy I7 the trend or other factors
were cxtrapolated much further, or ,i'f:a' sudden change in the conditions
surrounding the industry were tot@ccur, much larger errors of estima-
tion might be experienced. ' .

Restating short-cul results for publication. The same methods
described on pages 247 %@254 of Chapter 14 can be used with curves
obtained by the shopbeut process, to prepare them.for publication.
There iz a shorteryiiéihod, however, which takes advantage of the fact
that the curves obtdined by the short-cut method are already in terms
of a net valug'ef’ X, for one variable, plus adjustments to that value
for the othier variables. All that is necessary Is to determine the
average Yalue of the final z's and use this average as the a constant.
(In.4he) ilustrative example just given, this average was only 0.08,
and (}onsequently was ignored.) Then the final functions are de
termined as follows (for the final curves of the illustrative problem)-

Fo(Xs) = a + f7 (X3)
Fy(zs) = f3 (@)

Fylzy) = f:(ﬁi)
Tt is evident that, except for the slight adjustment of adding u to
the first curve, these curves sre the same as the final curves shown on
Figures 54, 55, and 56,
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Identifying “joint” relations by the short-cut process. In some
problems the relation between the variables is such that the inde-
pendent variable cannot be explained fully by a regression equation
which adds the regression of X; on variable Xy, to that on Xy, ete.
Instead, in such cases the relation is so eomplex that the net change
in X, with given changes in X, will vary with the assoeiated values
of X or other variables. This type of relationship, designated “joint
cotrelation,” is discussed subsequently (Chapter 21). Where such cor-
relation is present, it will show up in the process of examining the
gubgroups of observations in the first steps of the short-cut proeess.

The following empirical data will serve to illustrate thegocturrence

_ o\ e

of joint correlation: i+ ' .\
Ohservation ¢ ¢
Number X Xa X}‘\ Xy
1 218 9 , e N 6
2 160 10 N 8 2
3 140 PN 7 10
4 264 4 11 6
5 30 O 5 2 3
6 56 QY 7 1 8
T 5 N1 5 1
8 16 A | 2 2 4
9 04, 2 5 7
10 26) 7 6 3
n \1{30 10 3 6
12 O 280 b 7 8
13 A7 120 3 4 10
14 O 25 1 5 5
15 ,.\'3 224 4 8 7
1{\ 120 6 0 2

:~;{‘Bé number of cases here is so small that it is difficult to eliminate

“the’effects of X5 and X, to determine the first approximation to the

X, X, relation. An approximate grouping can be made, however, by
clagsifying the observations into three groups, as follows:

One, those with X3 and X, both larger than their respective means.
Two, those with X3 and X, both smaller than their respeetive
means, '

i4 F‘rom Wilfred Malenbaum and John D, Black, The usge of the shart-cub
graphic methed of multiple correlation, Quarterly Journal of Economics, Vol.'LII,
p. 97, Navember, 1937, :
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Three, those with X; and X4 one above and one below their re-

spective means. . '

This gives groupings with four observations (3, 4, 12, and 15) in
the first group, four (5, 7, 8, and 14) in the second, and eight (1, 2, 6, 9,
10, 11, 13, and 16) in the third. Plotting each of these groups of obser-
vations, and drawing an approximate line through each, gives the
results shown in Figure 57.
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Tic. 57, Relation obh¥y'to X2, with observations elassified on X3 and X4 When
natural numbers gpe'used, the net regression of X1 on Xz appears to shift with the
{"\Y accompanying values of Xg and X;.

This, ﬁg}re differs from those we have examined previously (such
ag Figiire 44 on page 272 or Figure 52 on page 284) in that the relations
as{shown by the several subgroups. do not parallel one another at
relatively constant distanees, but instead diverge sharply. It appears,
therefore, that, the relstion of X to Xy depends not only on the value
of X, but also on the associated values of X5 and X,

In this particular case the progressive nature of the relations sho.wn
on Figure 57 might lead us to suspect that the relation, instead of being
an additive one, is a multiplying one. If that is the case, though it
could not be represented adequately by an equation of the type:

X, = f2(X2) + f5(Xs) F fulXS)
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it still might be represented by:
Xy = [$2(X2)] [#2(X3)] [pa(X )]
[f that is the ease, it ean be determined by uéing tho relation:
log Xy = f, (log X3} + f3 (log X3) + f4 (log X4)

We can test whether this is likely to give a satisfactory fit by reploiting
Figure 57 on double logarithmic paper, or by plotting it on ordinary
paper, substituting the logarithms of X; aud X5 for the natural values.
Let ug do the latter, \

. N
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¥ra. 58. When the Ingz}ih)ms of the data shown in Figure 57 are used, the net
regression of X; on X2 is found lo be about the same, regardless of ihe accom-
’ AN/ panying values of X3 and Xy.

When thakt»\ls done, the relations appear as shown in Figure 58. The
three lipe}& fitted roughly to the three sets of observations, now appear
more;qi"early parallel. In particular, the line of the upper group, which
in Figure 57 made almost a 60° angle with the line for the lower group,

Nisjalmost perfectly parallel to it in Figure 58. Apparently in this ex-
ample the preblem can be handled satisfactorily by the usual short-
cut procedures, merely by transforming the varizbles from natural
numbers to logarithms, '

- Where this transformation, or other simple transformations, do not
serve to make the successive sub-groups show approximately parallel
relations, the methods of Chapter 21 must be employed instead.

Application of the short-cut method to large samples. The short-
cut method might be-applied to samples too large to plot the indi-
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vidual observations separately, by using a modification of the process
of subgrouping and averaging illustrated in Chapter 11. The aver-
ages from Table 42, plotted in Figures 30 and 31, indicated quite
well the final slope of the net regression lines. That was because
the influcnce of the other independent variable had been largely held
constant by the process of subclassifying. In the same way the
lines of averages from subgroups would tend to indicate the regres-
gion curves in problems where curves were needed. With a sufficient
number of obscrvations, the first approximation to each of the net;
regression eurves might be obtained from charts of subaverages singic®
lar to Figures 30 and 31 on page 183. These several first approxima-
tion curves could then be made the basis for working out esthmated
values of X; and residuals. The process of suecessive app;jqx‘imations
could then be continned exactly as illustrated in Chaptep{4. JSince the
first approximation curves would approach fairly neaffo’ the true net
regressions, the number of approximations required {o-obtain the same
closencss of fit would usually be less than by the.garlier method.
Combination of short-cut procedures and mat ematical procedures.
Both the short-cut method of this chaptérland the longer guccessive-
approximation method of Chapter lé;gle'pénd on graphic methods in
arriving at the curves of best fif. Where especially high aceuracy ]
desired, the final slope of the several curves can be checked by least
squares, according to the method'set forth in Chapter 22 on pages 401
to 403. K . ‘
Some investigators prefer to use the short-cut method to determine
the approximate shapefr,\u each of the several net Tegression CUIvVes,
and then to fit mathematical net regressions capable of representing
those scveral sha@gs. The technique for fitting these mathematical
curves to sevpr.’gi\'ériables is also set forth in Chapter 22 on pages 396
to 401. Iithere is a logical basis to support the eurves employed,
there is,s:r:)me value to this procedure, If the equations are simply
selected émpirically, however, the mathematical eurves have no more
méaning than the graphic ones, for the reasons already discussed fully
in Chapter 6. It is true that any one fitting the same set of mathe-
matical curves to the same data by the same method will get exactly
the same result, to the fifth decimal place in the values of the constants,
if desired. Curves obtained by different investigators by either graphic
pProeess, on the contrary, may vary slightly from one to another. But
the identical constants obtained by the least-squares fit. have only
a fictitious aceuracy, as compared with their standard errors, or with
the zone of uncertainty within which the function ecan be determined
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from the given set of observations. Multiple regression curves are
significant only with respect to this zone, rather than to the exact line
(as explained fully in Chapter 18). With proper care in analyzing
the data for interrelationships and in carrying through the successive
approximations, as explained in Chapter 14 and in this chapter, either
graphie method will ordinarily give results about as significant, within
their error zone, as results obtained by the more laborious methods of
fitting mathematical curves by extensive arithmetic caleulations.

Summary. Under eertain conditiens first approximations g _mul-
tiple regression lines or curves may be obtained directly {rem the
original observations by a graphie process based on the domparison
of Individual observations, considering several variahl€3)simultane-
ously. This proccss eliminates the necessity of compuimg linear re-
gressions by arithmetical means.” Further, it ,sﬁbstltutes graphie
measurements for arithmetie calculations in eprrecting these curves
to their final shape by successive approximatishs. It requires the re-
searcher to examine his data more thoredshly and so to cxercise
thought and care in working out the relatioris and in interpreting their
significance. Carefully used, it matetiglly reduces the time required
in determining multiple regression JLurves,

Note 1, Chapter 16. In view of, the extensne diseussions which have cecurred
coneerning the validity of the shart eut method, cortain key articles on this point
are lsted here. A~

Warte, Wargen C,, So}ne characteristics of the graphic method of correla-
tion, Jour. AfwerStat. Assoe., Vol. XXVII, pp. 6870, March, 1932.
* EzerieL, Morgegary Further remarks on the graphic method of correlution,
Jour. Amer.Stat. Assoc., Vol. XXVIL, pp, 183-185, June, 1932,
MALENBAU){\W and J. D, Buack, The use of the short-cub graphic method
of mnl’mp]e correlation, Quare. Jour. Egon., Vol. LII, pp. 66-112, Novem-
LT 1937,
B Ti. H., and Moroecar Fzegier, The use of the shorf-cut graphic method
,}; of multiple eorrelation, Comment, and Turther comment, Quart. Jour.
NN Eeon, Vol LV, pp. 318-346, February, 1940.
N\ Wezrmasw, H, R., Application and uses of the graphic method of multiple
y - eorrelation, Jour. Farm Eeon., Vol. XXIII, pp. 311-316, February, 1941.
Warre, Warsenw C., Place of, and limitations to, the method, Jour. Farm
Eean., Vol. XXIII, pp. 317-322, February, 1841,
Workine, E. J., and Georreey Suspmrsp, Notes on the place of the graphie
method of correlation analysis, Jour. Farm Foon., Vol, XXIII, pp. 322-
a23. o
Foore, Ricuars I, and J. Russery Ives, The relationship of the method of
graphic correlation to least squares, U, 8. Department of Agriculture,
Bureau of Agriculiural Ecenories, mimeographed report, December,
1940. .
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These discussions, especially the report by Foote and Ives, and an address by
Mever A, Girshick at the same meeling, as summarized in the February, 1941,
Jowrnal of Farm Economics, have provided definite proof of the meaning of the
gruphic method, They have shown that in linear multiple correlation the graphie
method gives results which lend lo approach the lines secured by a least-squares
solulion, cven if the first approximations are purcly arbitrary guesses. Further,
they have shown that the speed of convergence depends on the intercorrelation
among the independent wariables, The higher their intercorrelation, the slower
tends o he the speed of the convergenee. _

The dizcussion und procedures in this chapter, as now revised, take into asecount
these revent exuminations of the meaning of the short-cut graphic method, and
inporporate the most uselul and significant suggestions to the student Which have

come out of them.
L\

Note 2, Chapter 16, The comments made in the nole on page 25&3.}3131}’ 1o
Chapier 16 us well. If the standard error of estimate is calculated‘“(as shown
ou pages 293 and 294) as each new set of approximation curv es~1s “tompleted, it
will show whether the gain in closeness of fit is sufficient to oﬁ’Qet any additional
flexibility introduced in the eurves., The validity of this te};t\ however, depends
upon the user's skill in estimating the value of m to eciploy.

\,
\ \

»
N/



CHAPTER 17

MEASURING THE WAY A DEPENDENT VARIABLE CHANGES
WITH CHANGES IN A NON-QUANTITATIVE INDEPENDENT
FACTOR ~

It is frequently desirable to determine the change in omesxpriable
associated with changes in an independent factor whiéh) varies in
such a way that It cannot be measured quantitativelys “Thus if the
significance of various factors aflecting farm Valge."g'is to be deter-
mined, one may wish to include type of road.-wg\one of the factors,
since a farm on & concrete road should be\expected to be worth
more than onc on & dirt road, other factors’%’ing the same, Yet the
designations, concrete, brick, macadamygravel, and dirt, cannot be
considered in the correlation analysig In” the way that the numbers
measuring variable factors are treatéd.

Where no other factors are invelved, a non-quantitative factor may
be treated by sorting with resﬁeé-t to that factor, and averaging the
dependent variable. Thug¥ only type of road is being considered,
the average value per aere of farms fronting on each type of road
may be taken as the’\gséasure of the influence of roads on value. If,
however, several other factors must be considered at the zame time,
such as valuesof simprovements, productivity of the soil, distance
from town, etey and if there is any relation hetween differences in
these fan%xf;k‘and differences in road type (as in gemeral there will
tend tqo{be), the influence of road type must be measured by some
applidation of multiple correlation methods. Fortunately the methods
'of\frﬁultiple curvilinear correlation, as presented in Chapters 14, 15,
and 16, can be extended to treat non-quantitative factors as well,
and thus provide the answer to the difficulty.

Eliminating the influence of other variables. The method of de-
termining regressions for non-quantitative variables may be illustrated
by the data shown in Table 70. These data are from a study of the
relation of various qualily factors to the price of eggs sold at retail?
The factors shown in Table 70 are X o, an index of the interior quality

1 Original data collected by C. B. Howe. See reference 42 of Chapter 23.
502
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TABLE 70
Pata sor Faq PROBLEM, WItH A NON-(QUANTITATIVE INDEPENBENT VARIABLE
.Independent variables Dependent
' variable, 2" FiX5) 2
X ! Xy | Xo | Xt Xy
21 | 23 4 C 35 —~73| 406 | — 7.9
35 ‘ 24 .12 C 43 — 84| 406 | ~ 9.0
26 | 23 12 8 55 " 3.4 409 2N
27 1 24 12 B 55 3.3 1 +0.9 W24
31, 22 12 A 50 —1.81 =25 [¢\DT
35 | 24 12 C 44 ~ 9.4 | 408 {)*~10.0
28 1 23 12 C 60 8.2 | 408 7.6
41 23 12 B 50 — 4.8 | A9 — 5.7
28 26 2 C 45 ~ 1.6 |(#0.6 | — 2.2
24 23 11 B 52 46N ) 409 3.7
28 20 12 C 45 - 53N 406 | — 6.1
49 24 12 C 55 938 | 406 | — 4.2
30 24 12 C 55 (2.4 | +0.6 1.8
48 23 12 B 60 sS4 19| +0.9 1.0
19 22 9 C 45, 1.8 | +0.6 1.2
22 23 3 A A5 1.7 | ~2.5 4.2
33 25 | 12 C 50" 6.6 | +0.6 6.0
26 24 12 C a9 6.9 | 0.6 6.3
35 23 12 B, 55 2.1 409 1.2
W 1 23 12 B 50 —~09 ] 409 | — 1.8
25 25 12 |, (B 55 2.6 1 0.9 1.7
46 24 12 Y\'B 60 25| +0.9 1.6
30 28 ™[ B 45 —382 | 408 | —4.1
24 24 | a2v| B 55 3.1 | +0.9 2.2
48 23 |(N\12 B 60 1.9 | +0.9 1.0
17 22 {12 C 55 4.8 | +0.8 4.2
18 N 12 A 45 ~ 53| —28 |-~ 28
43 §~ 12 C 55 —03 | +0.6 | — 09
30 k325 12 C 67 14.0 | +0.6 13.4
19" 24 2 B 53 8.3 | +0.9° 7.4
AN 24 0 B 55 0.9 | +0.9 0.0
2 24 12 B 55 2.2 | +0.9 1.3
26 24 12 B 49 — 31 ] +0.9 | —40
38 24 12 A 42 ~12.2 | -2.5 | - 9%
28 23 12 B 42 ~ 99! 409 | —108
24 24 0 A 45 —-29 | -2.5 | — 0.4
37 25 12 A 40 —14.3 | -2.5 | —11.8
36 23 12 A 48 — 5.1 ~2.5 — 2.6

* A designates " sold without carton,” B *ecld in carten bub unbranded,” and G * eold iz

earton with brand name."”
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TABLE 70—Continued

Independent variables Dependent
yariable, 2" F(Xs) &

X: | X | Xo | Xt X
10 23 0 B 47 1.2 | +o.9 0.3
35 24 12 c 59 561 406 5.0
22 22 12 B 52 1.2 | +0.9 0.3
2 21 12 B 55 4.0 | +6.9 3.1
16 23 0 B 40 — 6.5 | +0.9 A =74
6 22 3 B 40 — 1.0 +q.9\“~. - 1.9
at 23 12 B 55 2.8 | 0.9 1.9
26 23 112 B 55 3.4 | R0 2.5
36 21 12 B 60 7.8 0.9 6.9
29 22 12 B 55 1.4} +0.9 0.5
) 23 12 B 60 48 | +0.9 3.9
36 24 12 ¢ 60 6.4 | +0.6 5.8
41 2. 12 B 60 28 | 40 1.9
27 24 12 C BN - 2.8 +0.6 2.2
31 22 12 A BNV | — 1.8 | —2.5 0.7
26 22 11 A A0~ —72 | -25 | —4.7
45 23 12 A | &3%0 3.5 | —-2.5 6.0
i8 25 12 C %S 45 — 66 406 | —7.2
35 24 12 C 50 — 341 406 | — 4.0
21 23 iz A 55 4.0 +6.6 3.4
4 | = 12 |\ 60 39| —2.5 6.4
48 24 12,0 a 55 ~36| —25 1 —-11
33 24 12N 55 2.0 | -2.5 4.5
47 24 {2 C 55 — 3.1 | 406 | —3.7
16 |22 (jO A 45 3.9 | —2.5 6.4
32 25 (P70 B 50 0.8 [ +0.9 | — O
45 20 12 B 55 —24 | 409 | - 3.3
48 \% 12 B 57 0.0 | 409 | —0.9
32 N\ 12 ¢ 53 2.2 | +0.6 1.6
168 23 1 C 41 — 4.2 | 406 [ — 4.8
L8070 25 1 ¢ 50 2.3 406 1.7
\ 21 22 0 A 42 — 50| —25 | —25
44 24 11 B 50 - 26 409 | —3.5
25 23 i2 B 49 — 21t 409 | — 3.0
16 23 0 A 45 — 15| =25 . 1.0
31 24 | 8 A 48 3.2 | 2.5 E 5.7

* A designates “sold without carton,” B "scld in carton but unbranded,” and C “ eold in
carton with brand name,"
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of the cggs in each dozen; X3, the weight of each dozen in ounces;
X, the number of white eggs in each dozen; X, the type of carton the
egos were sold in; and X, the price of eggs per dozen, in cents. Net
curvilinear regressions have been determined for the three quantitative
factors by the successive approximation method, and estimated prices
have been worked out by the regression equation

X = a + fo(X2) + f3(Xs) + f1(Xs)

The residuals, 2”7, obtained by subtracting these estimated prices from
the observed prices, X, are shown in the table. The values in the last™
two columns are explained later. O\
Determining the net influence of the new variable. The fizst, etep
in determining the net regression of Xy on Xj is to group the resid-
uals from the previous eurves, 2, according to the new faetor X,
and determine the average for each group. This gives results as
follows: \/

Value of X5 Average.of P
A—noearton. . voueevr i AN /—2.0
Boartom. ..o e i g, Y409
C—carton and brand name. . . .. ... AN +0.6

These results show that, after making allowances for the size,
color, and quality of the eggs, thosé 4vith unmarked ecartons gold 3.4
cents ahove those sold in bulk, on'the average, but those with branded
eartons sold only 3.1 cenis aboye eggs in bulk, These regults can-
not be accepted as the ﬁngvl,\eﬁ'ec-t of package on price without first
raising the question Whéth’er the curves previously determined to
show the influence. of the other factors might be changed somewhat
were the type of package taken into account. Whether this will be
true or not depends upon whether there is any correlation between
the new factof Biid the factors previously congidered, or whether they
are quite independent of each other. This can be determined by
sorting thebother factors according to the values of X5, and determin-
ing t'h\éil\" averages for each group. The results are:

r Averages of other independent variables Number of
Value of Xy eases
P X3 Xy
A—noearton............ 30.6 23.1 8.6 17
B—earton............... 31.6 23.2 9.6 33
C—carton and brand. .. .. 29.9 23.8 10.2 24




306 TREATMENT OF NON-QUANTITATIVE INDEPENDENT FACTORS

There does seem to be some correlation between X; and the
other variables. Apparently the eggs sold in unmarked cartons are,
on the average, of the best quality and of medium size; the eggs sold
in cartons under brand namcs are of larger size, but are not of such
high quality, on the average; whereas those sold in bulk average
medium in quality but low in size? Accordingly, the curves previ-

2 The exact correlation between X5 and Xa, X3, and X, can be computed by
estimating each of the other variables from the values of X, using the averages
of X, X, and Xy for cach group of X as the estimated values of X, Xa, a%i X4,
for the cases falling in each group. The residuals between the estimated and\attual
values, and their standard deviation, can then be computed for cach gf\the three
variables. Then the indexes of corrclation ean be computed in fiie, tiehal way.
When computed this way by using group averages instead of a confimdous function,
the special name corvelation ratio is given to the correlation, anidithe symbol n is
used to designate it. This value may be more rapidly comptted by the following
formula (using ¥ to represent the dependont variable, and-X the independent vari-
rhle, just as with simple correlation in Chapters 5 to{0

Zfno(Mo)®) — n(3Ly)
Ny = = 2 (68}
. fwl,’ x\
Here . is the correlation ratic for ¥ valueg ggtmated from group averages when
sorted on X} no(Mo)? is the number of cages,in each group fimes the square of the
average value of ¥ for that group, Zlrgfdf0)2] is the sum of all such values, o, is
the standard deviation of the variablebeing estimated, and » is the number of 2ll
the observations (= Sny). N\

The process may be itlustraged by caleulating nes, the correlation ratio between
X2 and X5, from the data akibye:

Xﬁ A \51’!0 . ki) (11 )2
J\ Mean X - | Number of cases Horno
K. 30.6 17 15,918.12
(B 316 33 32,052.48
N 29.9 24 21,456.24
N A I : 74 70,326.84

g, - Lol M) — n(M _ 70,326.84 — 70,285.61
no} 7,505.76
The value as caletilated is subject ta the same correction equation (26) as the cor-
relation index, with m = pumber of Eroupd.

Ho adjusted, v25 shrinks to 0, ghowing no real correlation,

This same mecasure of correlation by group averages can be applied to guan-
titative variables as well as to non-guantitative ones, but in that case it has less
significance than the index of correlation, which relutes to s continuous function
nstead of ap irregular line of AVErages,

= 005493, Tz = 0074
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ously determined for the change in price with differences in size and
in quality may have included some portion of the effect really asso-
ciated with eartons instead. Now that at least an approximaie
moasure has been obtained of the influenee of carton on price, the
previous curves may be modified by taklng this faetor also into
_ ageount.

Taking account of the non-quantitative variable in estimating X,
and z. The first ateps in the procedure of allowing for the extent to
which prices varied with the carton are shown in Table 70. In the
eolurn headed f{X5) the approximate influence of differences in carten®
on price are entered, the averages found in the tabulation on paged 305
being used. Sinee these values would be added to the previeds estl-
mated values of Xy to obtain the new estimates, they may" nstead

be subtracted from the previeus residuals (2””) to obtsin, the revised
residuals. The last column shows these new values for 2", Before
using these new values to see if any changes are néegssary in the other
regression curves we may first determine how much ‘the standard error
of estimate has been reduced by taking X i %" account. This could
be determined direetly by computing theXstandard deviation of the
new z" values; but a much shorter method 13 available, using the same
principle employed in footnote 2. By the use of this method, the v,
may be computed from the o by thé formula

P

3, [E(noM2) — (M)

o‘qnn ==
7
The necessary comp(\t‘s‘tions are:
X er " [Number of cases nM, n{Mg)?
45
A {\-2.5 17 —42.5 106.25
B ;\“ 0.9 33 29.7 26.73
C W 0.6 24 14,4 8.64
'S
"9 Sums, ....... 1.6 141,62
1.6
Mo = == = 0.0216
R T

Bo
2 74(5.06)% — (141.62 — 0.04)
G}”” =
. 74
Gam = 487

= 23.60 |
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Computing the standard error for estimates based on X5 and the other
“variables, we must recognize that the value of m has been increased by
three by the introduciion of the new factor; so, whereas m was assumed
to equal 8 previously, it now equals 11. Adjusting the values of (5.06
for g, and 4.87 for ¢ by equation (65), we find 51 ¢.3,4 = 5.36,
cand Sypzaas = 5.27.  Apparently the introduction of X5 as a
factor has had as yet but slight effect on the accuracy with which egg
prices might be cstimated.

Making further successive approximation corrections. Tt ig still
possible, however, that the regressions for the other factors muaht be
modified now that X5 has been at least approximately allowed for.
Ceneequently the values of 2™ are classified according fof (the Vaimes of
X,, X3, and X4, and the averages computed for e,aah group.  The
averages given in Tables 71, 72, and 73 are securedd "THe aver ages in
Table 71 suggest that the eurve for f, (X5) might be)nodlﬁul slightly, so
as to risc more steeply in the portion up to Xo\= 40 and less steeply
thereafter. Table 72 does not indicate any edmsistent relation hetween
X3 and 2", so no further change in f3(§'¥'1) is indicated. Table 73
indicateg that the curve for f,(X,) mmht also be altered slightly, so as
to have a somewhat steeper slope o\ ¢

TABLE 71
Averace Varvms JOF z’”’ Fon Conrresroxpmvg Xz VALUES
<,
L)
X values &mbcr of cases Average of X Average of 27"

014 2 8.0 —0.9
15-19 € 9 17.2 0.2
20-29.0 \ 23 25.1 +0.1
30\§ 24 .33.5 +0.3
6 45.5 —0.1

D) If f2 (X3) and f4(X,) were modified as suggested, a now estimated
Value of Xy might then be worked out, using thesc new eurves and the
previous curve for f3(X;), and using the values for f5{X;) alrcady
entered in Table 70, The new z's based on these new estimates might
then be classified with respect to X5, to determine if any change need
be made in the values for f;(X5) worked out on page 305. If any
material change were found necessary in X, the residuals might be
corrected accordingly, and then averaged mth respect to X, X, and
Xy, to see if any further changes would be needed in their values.
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This process of successive approximation should be continued until no
further significant change was indicated in any of the curves, or until
the 5 (2.3.4.5) showed no further redizetion.

TABLE 72
AveraceE VaLues oF 2 ror Corresponping X3 VALuEs
X3 values Number of esses | Average of 2"
N\
20 | —6.1 .
21 2 5.0 O\
22 13 0.1 N
23 23 0.2 P
24 25 —0.1 N
25 8 62>
26 2 BN

¥

In view of the fact that none of the avera eé;,b\f'z’”’ shown in Tables
71 to 73 are so large but what they might ir%v}y readily have oceurred
by chance, it does not seem worth while, Sn’this problem, to carry out
the additional steps just outlined. ~In a problem where the non-
quantitative factor is an impm:taﬁt" one, however, and where it is

N g

ATABLE 73

P\ .
AVERAGE VALUF{’\S»E J2"* yor CORREBPONDING X4 VALUES
X4 values Number of cases Average of X, Average of 277
\ ¥
o 7 0 -1.3
1— 2 \&J 5 1.4 —0.4
3~ & 4 3.3 +0.2
8= 5 10.0 +0.5
Q) 12 53 12.0 +0.2
4\ 3y

significantly correlated with the other independent variables, the de-
termination of the net function for that factor should be carried through
& sufficient number of approximations to measure the final net effect of
each factor as accurately as possible,

Taking the preliminary results shown on page 305 as the final
measure of the influence of type of container on price, we may then
eonclude that eggs sold in an unmarked carton brought, on the average,
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34 cents more per dozen than eggs of the same quality, size, and color
sold in bulk, and 0.3 cent more than eggs sold in a carton with a brand
name. (This last result might reflect the experience of consumers with
branded eggs of poor quality, as indicated in the tabulation on page 305,
which might tend to make them sell at a discount even when they were
of equal quality.) The significance of the relation may be measured
by the slight reduction in the standard error of estimate previously
noted, or else by the increase in the index of multiple correlation.
Computing the indexes of multiple correlation corresponding to the
standard errors of estimate before and after the type of carton is
allowed for, by equation (66.2), we find them to be P b 0.59;
?1_2345 = (.62. The corresponding indexes of detcrmina:t\mn, 35 and
38 per cent, indicate that taking into consideration the differences in
the carton has increased the proportion of egg Erices which can be
explained by 3 per cent of the original variancey@yen after duc allow-
ance is made for the additional constants theMprocess introduces into
the estimating equation. \\

It should be noted that the first approximation to the regression
on non-quantitative factors can be made directly from the first set of
residuals, computed from the lir;é‘ar multiple regression equation,
instead of waiting until after approximate regression curves are de-
termined for the other factargs T case a non-quantitative factor is
& very important one, so that ignoving it in determining the net Jinear
regreegions may seriouslyn impair their accuracy, i may be roughly
ineluded by designa 'ﬁg"successive groups by a numerical eode which
approximates thofexpected influence of the variable. Then if the
true influenceyig’of a different order from the expected influence,
that fact will,show up when the first approximation curves are worked
out. (For'tht non-quantitative factor the averages of residuals mush
be intgrtx' ted ag discrete points for each: class, however, rather than
aS.a\fqént-inuaus function.) Thus for the egg problem it might have

'bqgn’ tentatively assumed that eggs in branded cartons would sell
above eggs in unbranded cartons, and both would sell well above
eggs in bulk. The bulk eggs eould then have been designated by 1
the unbranded eartons by 3; and branded eartons by 4. The net
linear regression would have been positive; but the analysis of the
residuals would have revealed that the egos in"b_randed eartons really
averaged lower in price (other factors equal) than the eggs in un-
branded cartons, so the final conclusion would probably be much the
same as the one just determined, :
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Summary, Where an independent factor is not a continuous
variable, but may be classified into two or more groups, the regression
of a dependent factor may be determined with respect fo each group,
while Lolding other factors constant by the usual multiple correlation
process. Standard errors and indexes of eorrelation may be worked
out to include the effects of non-quantitative independent factors
cqually as well as for continuously variable faclors.
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CHAPTER 18

DETERMINING THE RELIABILITY OF CORRELATION
CONCLUSIONS

Early in this book it was pointed out that when any statistical
measure, such as an average, is determined from a samplg, sblected
from a universe under study, the true value of that meafi® in the
universe might be different from the value shown bylfhe sample.
Methods were discussed which enable cne to est-irpa‘té. how far the
average from such a sample may vary from the txlle average, for a
stated proportion of such samples. Such estimatéénable one to judge
how much confidenee may be placed in an ayerage caleulated from s
given sample. K70 2

Simple Correlgtﬁ%

Regression coefficients. Correla‘gioh constants determined from
finite samples are just as subjectﬁi:’a variation as are other statistical
constants. Thus in an experindeitt 5 samples of 30 observations each
were drawn at random from the same universe, The true value of

o m\ TABLE 74

A\
Y4roEs oF by, SEcoren }SUCGESBIVE BaMriEs DRAWN FrROM THE SAME UNIVERSE,
wirn DirFERENT NUMBERS OF QBSERVATIONS

h X
\:\“ 30 observations | 50 observations | 100 observations

NN\ .
O 0.292 0.175 0.113
AR 0.012 —0.297 0.120
~ —0.136 0.144 0.303
\/ —0.022 ' 0.130 0.197
0. 449 0.167 0.132
True value 0.152 . 0.152 0.162

by, for the universe was 0.152. The regression of ¥ on X was de-

termined scparately for each sample. The values for b,, which were

secured from the 5 samples varied from —0.136 to +0.449, as shown

in Table 74. When 5 samples of 50 observations each were drawn, and
312
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the regressions computed for each, the range was reduced to —0.297
to +0.175; but the variation between samples was still large. Even
when 100 observations were included in each sample, the Tegressions
were by no means identical, though the range was reduced still more.
Tt is evident that the observed values of by, fell both above and
below the true value for the universe from whieh the samples were
being selected.! Tt is also evident that the smaller the number of
observations, the larger the variation in the results between different
samples and the greater the possibility of 2 serious difference between
the true value and that indicated by the sample. The amount ol
variation likely to be present in regressions determined from I;z-{n‘:,{om
samples of any specified size may be estimated by the equal;ion’

7

Standard error of by, = Sye_ "G (69)
a1 0

Since this constant is computed from the adjusted vilge, §, 0, no further

adjustment is required, SO

Tf only one of the samples in Table 74 h JPeen obtained—say the
first one with 50 observations—the obseryéd)value for b, would have
been ~+0.175. The standard error of, estimate for this sample was
2,46, and the o, was 244 Compt}tiﬁg’ the standard error of bys for
this sample by means of equat.iqg’{BQ), :

246 246 _
7T QHNE0 1125
the value of by, as deﬁufniined from this single sample, may therefore
be stated to be 0.175s= 0.143.

The standardseitor of the regression coefficient is interpreted exactly
the same as thestandard error of the average was interpreted in
Chapter 2 Ihtwo samples out of three, on the average, the cbserved
regression will miss the true regression by not more than one standard
error_edlbulated from the sample. Therefore, if in this case we say
that the true regression les between 0.175 — 0.143 and 0.175 + 0.143,
or'between 0.032 and 0.318, we are making a statement of a type which,
if made for a succession of such samples, will be wrong one time out of
three, on the average. Similarly, if we said that the true regression

1 In some textbooks, bye would be used to represent the regression as determined
from the sample and By would be used 1o represent the true value of the corre-
sponding regression in the umiverse from which the sample was drawn. In this
notation, in Table 74, the value for PBe==0152, In consulting textbooks using
this notation, we should not cenfuse this use of the § with the special definition

given it in Chapter 13, equation (52).
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probably lies between —0.111 and 0.461, i.e., within a range of twice
the standard error from the observed value, we are making & statement
of & kind which, if made for a series of samples, will he wrong in one
sample out of twenty, on the average.

It happens, in this particular case, that four out of five of the
observed regressions (for samples of 50) fall within onc ey of the re-
gression from the first sample.®> Tt alse happens that the true value
also falls within that range. This will not always be lrue, however.
For example, if the sample had happened ta give the same results as
the third sample of 30 obscrvations, with bys = —0.136, the cazewhight
have been different. For that sample, the values of the otligr con-
stants were such as to make o, = 0.109. The value of bwszfs mdicated
by, this sample, therefore, —0.136 + 0.109, is such thatthe obhserved
value lies 2.6 times its own standard error from thg itrue value, 0.152,
Although a departure as large as this would ofdinarily be expected
to oceur only once out of every 100 samples @n‘the average (0.009),
still it may happen with any particular safiple® For that reason, if
very great accuracy is desired, a range 'c}f “three times the standard
error may be used as the eriterion. Thére is but one chance out of
nearly 400 {0.0027) that a given ranom sample will vield a constant
such as a regression coefficient which will fall more than three times its
own standard error away frontsthe true value for the universe.

These probabilities apply only in case there are thirty or more
degrees of freedom (n-m} in the sample. As was pointed out in
Chapter 2, if the nuisber of degrees of freedom is less than thirty,
the probabilities ofAalling outside of any given range of the true value
are increased, &s(3llown in Table A on page 23. In using this table
for regression eoefticlents, subtract 1 from the number of cases in the
sample bef:ofp}ooking the probability up in the table.*

Thugi8 value of by, = 0.50 = 0.12 were found from a randem
sampleXof 11 cases, the reliability of the observed regression eould be
ig%:gigd'fmm the column headed 10 in Table A. That column indicates

* A more precise way of stating this comparison would be to show a series of
regressions from samples drawn {from the same universe, such as those listed in
Table 74, with each sample regression follawed by == its own standard error. If
that wore done, it would then be found that, in two samples out of three, on the
average, the value by. 4 o, would overlap the true value of by, for the universe.

* Probability tables, such as that given in Table A of Chapter 2, or shown
graphically in Figure A, page 503, list these odds for various multiples of the o.

. ¢ That is beeause two constants (2 2nd b) have been determined simultaneonsly
in the process of getting b, whereas the table is stated for arithmetic means, which

represent the determination of only g, single constant. (See page 22, foolnote 7.)
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that, with samples of this size, 34 ouf of each 100 samples, on the
average, would miss the regression in the universe by as much as 0.12
(1 3) ; about 8 out of cach 100 would miss by as much as .24 {2 a3} ;
and 15 samples out of each 1,000 would miss by as much as 3 g3, or 0.36.
Thus in this case, if we say that the true value probably lies between
0.14 and 0.86, we are making a statement of the sort which is likely to
be wrong only once or twice out of each hundred such statements—if
the sample was drawn under such -conditions that the formulas of
simple sampling hold true.. N\

Tt should be noted from equation (69) that the standard error.’of
the regression coefficient varies inversely with the square rqoié ‘of the
number of observations. The effect of this is illustrated in Table 74.
The variation of the regression coefficients obtained frofn~samples of
100 observations is only about half as great as t-hc'\vériation of the
regression coefficients from samples of 30. O -

Regression line. Not only may the observe slope of the regression
line vary from the true slope, but the elevatioh’ef the line, as observed
from a sample, may vary from the true gléyation. Formula (69) has
already indicated a way of determining the standard error of the
regression coefficient, and so of estinating the probable range within
which the true slope lies. The héight of the regression ling is most
accurately determined for the aean estimated value, M, of the de-
pendent factor, correspondinghio the observed mean value of X, the
independent factor. If {&e efine the mean as

‘~.\ My' = Qyzx + bsza:

we may find iis :sﬁgzﬁciard error by the formula
"\’\ oM. = §3’T{
° =

The Standard error of the whole regression line may now be deter-
minédfrom equations (69) and (70). We may illustrate by data from
t‘i\w-:“cottOn-yield problem used as an example in Chapter 8, on page 147.
With 14 observations, the values were. by = 16.70, @y =~ 2.261,
M, =197, 5, = 8.28, 0, = 073, My = My = 3064, o, = 1443.

M, =— 2261+ (16.70)(1.97) = 30.64
8.28
O'MU' = -ﬁ = 2.21
-85 _ _
O'by: = 0‘73\/E

(70)
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Bince the estimated value, ¥’ equals M, + b(z), the standard error
of the estimate for any value of z will be composed of the sum of
the standard errors of M, and of b(z). Standard errors are standard
deviations; hence they can be summed only by adding their sfuares
(as demonstrated in Appendix 2, Note 1). The standard error of Y,
for any particular value of , is therefore given by the equation ®

0, = Vi + (o0,0) (70.1)

By using this relation, the calculation of the standard error 81NV,
for selected values of X, is shown in the following tabulation A

n
Ny

- Caleulation of myp PAY

Beleeted | Departures $
volues from Qs
of mesn o . olar o NN,
X z = (3”3%) (@5:2)" | _ (2.2 f;’”) i
O oty
o\
0.97 -1.00 | —3.030 | 9.1800.(4'8841 | 14.0650 3.75
1.47 —0.50 | ~1.515 | 2.2962(p"4.8841 | 7.1793 | 2.68
1.97 ¢ 0 0ol | 4.8841 4.8841 2.21
2.47 0.50 1.516 | 2,9952 | 4.8841 7.1793 2.68
2.97 1.00 3.030 | 9MBO9 | 4.8841 | 14.0650 8.75
3.47 1.50 4.545 \\20.6570 | 4.8841 | 25 5411 5.05
3.97 2.00 8 0\60 36.7236 | 4.8841 | 41.6077 6.45
#\.J

There are 14 casgs}ésubtracting the one extra constant involved in
correlation determinations gives 13 as the number of observations with
which to judge #from Table A the gignificance of these standard errors.
Taking valge;g}iidway between those for 10 and for 16 cases, we find
that the statement that the true values of bye and of M, do not differ
from the observed values by more than the caleulated standard errors
willbeswrong for 34 out of each 100 such statements, on the average.
Simitarly, the statement that they do not differ by more than twice the
caleulated standard errors will be wrong for 7 out of 100 such state-
ments, on the average. The chances are therefore 93 out of 100 that
the true regression line would fall within twice the standard errors just
caleulated. Plotting 20, above and below the corresponding values of
Y’, given by the regression line, shows this range. These limits are

8 Ho_lbronk Working and Harold Hotelling, Applications of the theory of error
to the interpretation of trends, Journal of the Amerioan Statistical Association
Bapers and Proceedings, xxiv, Pp. 73-85, March supplement, 1929,
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plotted in Figure 59, together with the original observations and the re-
gression line, The limits within which the line probably fell could be
shown in & similar manner for any other desired limit of probabiiity,
Tt is now clear why great caution must be exercised in extending even a
linear regression line beyond the range of the data from which it
iz derived. As is evident in the figure, the true position of the line
becomes very uncertain as the limits of the data are approached,
and inecreases rapidly beyond them.

Yia)
icrrzoi?.ri-;ou[ed liuﬂiis

Y

60 [

80

&0 f—

—~Dhserved
regression lina

.\ |
; ~ﬁ'éggf Wwithia which the
VO P 'epmzo iy fes,
N oo br 9317

20

Q> | I .
.B 2.0 3.0 40
22 ) Acre-feet of woler applied ~Z

Fie. 59. Lin.éir"iegression of cotton yield' on jrrigation water applied, and range
N\ within which the frue relation probably lies.

ad
&

Ty "I\hany correlation problems, the regression line is the most im-
Pc}tant result of the study. The confidence that ean be placed in the
line determined from a random sample is no greater than is indicated
by the probable error of its slope, or the standard ertor zone of its
position. Accordingly, the final statement of the regression coefficient
or regression line should always indicate clearly the standard error
or probable error zone, and should also state the number of obser\'ra-
tions on which the conclusions are based. This will serve to caution
the reader of the extent to which the values may vary from-the true
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value simply due to chance fluctuations of sampling, and so caution
him not to attach more importance fo them than their significance
justifies.

Correlation coefficients. In exactly the same way that regression
coeffieients will vary from sample to sample, all other statistical con-
stants tend to vary. Regression coefficients from random samples
tend to be normally distributed around the true value, so that the
probability of a given departure from the true value occurring may
be judged from the normal curve;® but that is not equally true of
correlation coefficients. If the number of observations in the sample
is exceedingly large, so that fairly stable results are secured(the dis-
tribution of the observed correlations will tend to be neafly riormal,
g0 that the ﬂtandard error may be estimated by the formul.l '

gy

. 1 _ T & '\'o
Standard error of ry, = ——o——a\\
- VRS
This equation applies only when 7 is ]&r’g‘e},’say 100 or more. To
test the significance of correlation coeffislents obtained from small
samples, Fisher has developed the equdiion
i’\/' n—2
\/1 — 72

The value ¢ is used to Jl{dge the probability of the occurrence of
such a correlation pure}y’by chance, in exactly the same way that
the number of times il average is times its standard error is used
to judge the pmbablhty of the significanee of the average. Thus
if & correlation 0f°0.60 is secured with a sample of 21 caszes, ¢ = 3.26.
Looking up Q}'ﬁ‘s value in Table A on page 23, or Figure A of Ap-
pendix 3 \lgmg 20 for n,® we find that only in one sample out of 200
randormy Eamples, on the average, would a valuc this large or larger
be obtamed from a universe with no correlation present, If, however,
zkcorrelatmn of 0.60 had been secured with only 7 cases, £ would equal

7L.1)

8 The normal curve is the basis for the probability data given in the last colnmn
of Table A of -Chapter 2.

" Equation. (71} holds precisely true only when the value used for r is the true
correlation in the universe, rather than the value observed in the sample. This
limitation does not apply to equation (71.1). .

& Just as with regression coeffcionts, 1 less than the number of cases should be
taken for n when Table A is used to judge the significance of a correlation coeffi-

elent. The unadjusted correlation, r, should be used in all tosts of significance, not
the adjusted value 7.
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1.68. TFigure A indicates that, with this value of #, the chanees of
getting a correlation this large or larger from random samples drawn
from a universe with no true correlation would be. almost 0.16. This
means that out of 100 such samples obtained from & universe in which
the true correlation was zerc, 16, on the average, would show a cor-
relation as high as 0.60.° _ ' :

Although this method may be used in conjunetion with Tahle A
to defermine whether or not the eorrelations computed from small
samples are any valid indication of a correlation in excess of zerogit
cannot be used to determine the significance of the difference in ear-
relation between two samples or to determine whether or mot) the
correlation in a given sample exceeds any speecific value. T the first
illustration, for example, where r = + 0.60, one might Avigh fo know
the probability that the true correlation in the univerge.:exceeds + 0.20.
Owing to the skewed distribution of values of r when computed from
small samples, this cannot be determined by a simple sampling formula.
R. A. Fisher hag devised a method, howeijs 7 of go transforming
observed values of + as to give them a norinal distribution, and then
solving such problems as this from {he "transformed values. For
methods of dealing with this phase gfs&mpling, the reader is referred
to his presentation of -the method in Statistical Methods for Research
Workers, seventh edition, pages j?02 to 211,

Clertain of Fisher’s methéds to determine the reliability of observed °
correlations may be pqt“ﬁto more simple form for general use, as
shown in Figure. B in S@f)’endix 3. This figure is based upon the idea
that, although- we (cannot state the truc correlation existing in the
universe from the'éérrelation shown in a given sample, we can estimate
a minimum vedite' for the true correlation, with a given chance of being
wrong. Figure B has been calculated, by Tisher’s methods, to show
such probh Jo mininum correlations -in the universe, with the prob-
abilitySthat the statements based on the. figure will be wrong for
Veamiple out of 20, on the average. The results have been plotted
£8v/ different sizes of sample and observed correlations. Thus if a
random sample of 20 gives an observed correlation of 0.70, the figure
shows at a glance that we ean say that the true correlation is greater
than 044, with the expectation that such statements will be wrong
only once in twenty times, on the average. Similarly, for an obseh_red
correlation of 0:55 with & sample of 35 cases, reading from the Ine

5 See R. A. Tisher, Statistical Methods for Rescarch Workers, seventh edition,

Oliver and Boyd, London and Edinburgh, 1938, pages 197 to 202, for a fuller dis~
-cussion of the use of ¢ in judging the reliability of coprelation coefficients.
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